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Abstract:  Federated learning (FL) is a distributed machine learning method that protects the privacy of local data, and thus is 
used in scenarios like medical applications. However, FL algorithms are known to demonstrate deteriorated performance when 
the local data of each client is not independently and identically distributed (Non- IID). In this work, we explore the possibility of 
guiding the aggregation process in FL using low-rank based layer-wise metrics, and propose an aggregation framework that allows 
the use of any layer-wise metric to guide the aggregation process. Specifi cally, a layer-wise metric is used as the weight for the 
weighted averaging process in the aggregation, and the metric is optionally smoothed by exponential averaging.
In this work, we propose two low-rank layer-wise metrics. However, experiments do not show signifi cant improvement of 
the proposed methods over the baseline method (FedAvg), thus this paper mainly serves as a record of our exploration and the 
experimental results.
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  1.  Introduction
Federated Learning (FL) trains distributed machine learning models, preserving data privacy in cross-silo settings like healthcare. 

Non-IID data often leads to client drift, harming knowledge preservation [4, 6]. We focus on guiding aggregation with explainable low 
rank factorized metrics in FL, enabling layer-wise metric usage.

  2.  Related Works
  2.1  Federated Learning Problem Formulation

Traditionally, most machine learning optimization problems (involving one client) are of the following form: 

Where f(w) is defi ned to be the empirical loss and is simply the average of the loss on each data point l(xi, yi) or l(ˆyi, yi) where y î refers 
to the output of the model.

In the federated case, we would like to construct a problem where we could leverage already well defi ned optimization methods such as 
SGD. [5] showed that one can form local subproblems of similar structure on each client and defi ne the following local loss:

Where k refers to the kth client from K total clients, Pk is the data partition for client k where nk = |Pk| and fi(w) is the same as 
before but only specifi c to a data point within Pk. The goal is to use local optimization algorithms and defi ne the global loss in terms of 
all of the local subproblems in order to come up with some kind of aggregation technique to merge the results of the local optimization. 
Traditionally, this is done through the Federated Averaging algorithm. If n ≡∑nk, the global empirical loss can be expressed as the 
following according to [5]:
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Finally, the new federated optimization problem becomes

2.2   Federated Averaging
As previously discussed, FedAvg is the traditional aggregation algorithm in which each client is weighted according to its cor-

responding fraction nk as seen in (4) [8]. In practice, this is done by having each client run a local optimizer such (typically SGD or a 
variant) and every E epochs, a communication round is done and the aggregation step is performed. This translates to two different 
weight update steps:

(5)

3.   Low Rank Metrics
3.1   Low Rank Factorization

Within a Convolutional Neural Network (CNN), the weights of a convolution layer take the form of 4-D tensors of dimension k × 
k × ni × no where ni is the number of input channels and no is the number of output channels. The weight Wl for convolution layer l acts 
as a learned encoder for feature extraction and so [3] was able to unfold the tensor W on the input channel or output channel to obtain 
a 2D matrix Wl∈

whno×ni  or Wl∈
whni×no . This matrix is then separated from noise using Variational Bayesian Matrix Factorization to 

obtain a low-rank singular value decomposition Ŵl=UΛVT alongside some noise matrix:
Wl[Weight Matrix] → Ŵl[Low-Rank Structure] + El[Noise Perturbation]

3.2  Stable Rank
According to [3], the stable rank is defined as the norm energy of the singular values of a given matrix, however they propose a 

modified definition of stable rank for the low rank m×n matrix Ŵl  given by the following:

Where σ1≥σ2 ≥...≥σn′are the low rank singular values in descending order and n≤m. This measure is normalized by nσ2(Ŵl) and 
s(Ŵl)∈[0, 1]. A higher measure is theoretically indicative of a better encoder.

3.3  Temporal Knowledge Gain
We define temporal knowledge gain of client i∈	 S for layer l as the difference of stable rank between  round t and round t + 1 

as evaluated on the low rank weight structure:

If this difference is positive, it indicates an increase in stable rank and a relative improvement in the mapping done on layer l for 
client i. The opposite holds true if it is negative and the magnitude of the knowledge gain represents the amount of knowledge lost or 
gained. Since s(Ŵl)∈[0,1], KG ∈

[−1,1] with 1 being the desirable extreme representing a complete gain of knowledge.

3.4  Uniqueness Score
The goal of this metric is to compare the learning of one client in comparison to how consistent it is with other clients in order to 

combat client drift. In order to measure this, we use cosine similarity. Consider a set of clients S and two clients j and k  S. The low 
rank weight tensors of layer l are concatenated into vectors in the following manner:
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To calculate the similarity between the weights of these two clients we then simply compute

We then define the uniqueness score in the following manner:

Various intuitions about metric’s role in aggregation exist due to clients’ diverse training on unique samples. There are multiple 
intuitions at play here in terms of how this metric can be used to guide aggregation. Given that each client is being trained on different 
samples, each client may develop new patterns that other clients cannot develop. Discovery of these useful patterns leads to rapid 
divergence by responsible clients. Prioritizing the most unique client for new information may be beneficial. Sometimes, minimizing 
drift by favoring agreeing clients is useful. The most useful approach may change, but for simplicity, we use the uniqueness score 
(defined in (10)) for aggregation. Cosine similarity applies to any vectors; low rank factorization isn’t strictly needed but aids noise 
reduction for better results.

4.  Proposed Framework
The low rank metrics mentioned are among many possible ones to explore factorized weights and assess learning quality. Our 

focus is on temporal knowledge gain and similarity score in our experiments. This framework operates per layer, modifying federated 
averaging to introduce smoothness in weighted averaging and implement aggregation using a specified low rank metric. For general 
purposes, we will refer to a low rank metric as some measure on the weights M(Wˆ i) for layer l and client i. That means, in our 
example,M(Wˆ il) can be equal to KG(Wˆ il) or U(Wˆ il). Note that for a certain round t, M(Wˆ il) might include past values for 
weights from previous rounds such as in the case for knowledge gain and can also include weights of other clients such as is required 
to calculate uniqueness score. M(Ŵ il) is simply a freehand that shows that the measurement is being done to rank the client itself.

These metrics work layer by layer, converting 4D tensors in convolutional blocks for low rank measurements. Linear layers are 
weighted similarly to convolutional layers, each requiring individual weighted aggregation, unlike FedAvg and other strategies.

l
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To prevent discrepancies, the calculated score is normalized for weighted averaging. Multiple metrics can be applied by chaining 
multiplication (see normalization in Algorithm 1). Scores are often chained with the number of client samples, similar to FedAvg. 
Note, in the implementation, any zero/negative α values are limited to 1e-3 for stability, ensuring no negative or zero α in aggregation 
but allowing very small values for specific clients. Furthermore, as seen in line 10 of Algorithm 1, the factor β is introduced in order 
to increase the smoothness. This hyperparameter can be tuned in order to obtain the desired stability.

The two algorithms being used in our experimentation will be termed as FedKG where M(Ŵ i
l ) = KG(Ŵ il)  where  KG  is  as  

defined  in  (8)  and  FedUnique  where  M(Ŵ i
l)  =  U(Ŵ il)  where  the Uniqueness Score is as defined in (10).

5.  Experiments
We experimented with various algorithms and hyper parameters with our proposed framework and explored how much each 

algorithm improve the final accuracy in an non-IID dataset setting and how they perform in combination.

5.1  Experimental Setup
This work primarily focuses on image classification tasks, using the widely accepted Resnet-18 model and Adam optimizer. 

Experiments utilize CIFAR10, CIFAR100, and TinyImageNet200 datasets, partitioned non-IID using Dirichlet distribution. Each 
subset corresponds to one client’s private data. Implementation leverages the Flower framework and Dirichlet partitioning with 
FedML. FedAvg serves as the baseline for comparison. Hyper-parameter search is constrained to 250 training epochs, with the best 
combination used in the final experiment. Each experiment averages accuracy from three trials. See Figure 1.

Figure 1: Flowchart of the framework.

5.2  Generating Non-IID Data
Non-IID covers various data distribution types, including horizontal and vertical splitting in sample and label spaces. Our 

experiment focuses on horizontally split data that is Non-IID in both spaces, resulting in similar content and format among local 
datasets with varying sample counts per class. We created Non-IID datasets using a customized Dirichlet partitioning algorithm based 
on FedML. We simulated two Non-IID levels with α = 0.3 and α = 0.0001, as illustrated in Figure 2.

Figure 2: Non-IID data distribution visualization. Darker color indicates more data per class label per client. This representation reflects the data proportion, not the 
actual scale of CIFAR100 dataset samples.
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l)  =  U(Ŵ il)  where  the Uniqueness Score is as defined in (10).

5.  Experiments
We experimented with various algorithms and hyper parameters with our proposed framework and explored how much each 

algorithm improve the final accuracy in an non-IID dataset setting and how they perform in combination.

5.1  Experimental Setup
This work primarily focuses on image classification tasks, using the widely accepted Resnet-18 model and Adam optimizer. 

Experiments utilize CIFAR10, CIFAR100, and TinyImageNet200 datasets, partitioned non-IID using Dirichlet distribution. Each 
subset corresponds to one client’s private data. Implementation leverages the Flower framework and Dirichlet partitioning with 
FedML. FedAvg serves as the baseline for comparison. Hyper-parameter search is constrained to 250 training epochs, with the best 
combination used in the final experiment. Each experiment averages accuracy from three trials. See Figure 1.

Figure 1: Flowchart of the framework.

5.2  Generating Non-IID Data
Non-IID covers various data distribution types, including horizontal and vertical splitting in sample and label spaces. Our 

experiment focuses on horizontally split data that is Non-IID in both spaces, resulting in similar content and format among local 
datasets with varying sample counts per class. We created Non-IID datasets using a customized Dirichlet partitioning algorithm based 
on FedML. We simulated two Non-IID levels with α = 0.3 and α = 0.0001, as illustrated in Figure 2.

Figure 2: Non-IID data distribution visualization. Darker color indicates more data per class label per client. This representation reflects the data proportion, not the 
actual scale of CIFAR100 dataset samples.

l

5.3   Accuracy Results
We conducted experiments on six datasets: CIFAR10, CIFAR100, TinyImageNet200, with Dirichlet alpha=0.3 and 0.0001. Each 

algorithm underwent three trials for each setting, and the highest test accuracy per trial was averaged. Test accuracy is the mean of an 
epoch’s accuracy across all four clients. Results are depicted in Figure 3.

6.  Conclusion
We introduced a federated learning framework enabling layer-wise low-rank metric usage to guide aggregation and explored 

its effectiveness. However, experiment results didn’t reveal a strong pattern. Performance of FedKG and FedUnique compared to 
FedAvg depends on the dataset and lacks statistical significance (<1%). This paper mainly serves as an exploration record. Additional 
methods explored but not included can be found in the appendices. 
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