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1. Introduction

Throughout this paper K is a algebraically closed field and
has characteristicO, H is a finite -dimensional K — Hopf
algebra with antipode S which is a diagonalizable operator and

Cisa K —

coalgebra . There is a convenient adaptation of the

Heyneman—Sweedler! singma notation for
Ac) = z Cay ® €, and
plc)= ZCH) ®c, VeeC.

Definition1.1™ A grouplike elements of C'is a ¢ € C which

coalgebras

and comodules as

satisfies the following conditions: A(c) = ¢ ® ¢ and &(c) =1,
the set of grouplike elements of C is denoted G(C).

We firstly recall the following actions as module structures:

H"is a left H—module via(h—>h") g)=h"(§ )
for h,ge Hoh" e H".

H"is a rigt H—module via(h<h"§ g)=h"(§ )
for h,ge H.h" e H".

H isalefthH* —module via A~ —> h = Zh*(hz)hl
forh"e H ,he H.

H is aright H* —module via h < h* = Z:h*(hl)h2
forh"e H ,he H.

If g € H is a grouplike element as in Definition1.1, we can

denote by
L,={meH

h'm=h"(g)mforanyh" € H"}
and

R, ={n EH*‘h "=h'(g)nforanyh" € H"}
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which are ideals of H “and L, :J; R, = J. Also re-

call from!" that L o and R  are  l-dimensional,and there ex-

ists a grouplike element d such that R, = L, where d is
called the distinguished grouplike. We can perform the same
constructions on the dual algebra H " . More precisely, for any
neG(H")= Alg(H,K) we can define
L ={xe H|k =n(h)x foranyh € H}
R, ={y eH|ﬁ =n(h)yforanyh € H} .
We remark that if we keep the same definition we gave for
L o » then Lﬂ should be a subspace
of H™ The set L, , as defined above ,is just the preimage

of this subspace via the canonical

Isomorphism @ : H — H™.From the above it follows
that the subspaces L, and R, are ideals

of dimension 1 in H ,and there exists & € G(H ") such
that R, = L_. This element ¢ is the

distinguished grouplike element in H .

Remark1.2M" If H is semisimple and cosemisimple, then
distinguished grouplike in A and

H " are equal to 1 and & , respectively.

Lemmal.3® Suppose that H is a Hopf algebra over K .
Then

The only subspaces of H which are both a left ideal and left
coideal of H are {O} and

H.



If H contains a non-zero finite -dimensional left or right
ideal. Then H is finite-dimensional.

Lemmal 4% Let Cbe a finite-dimensional coalgebra
over K. ThenU > U™ is a one-one inclusion reversing
correspondence between the set of coideals (respectively
subcoalgebras, left coideals, right coideals) of C and the set of
subalgebras (respectively ideals, left ideals, right ideals) of the
dual algebra C”.

Lemmal.5® If C (K) is a simple coalgebra over K for
all n>1. Then any simple coalgebra over K is isomorphic to
C,(K) forsome n>1.

Lemmal.6™ Suppose U and V be vector spaces over K
and F': V" — U isthe transpose ofalinearmap f :U — V
If J and [ are subspaces of V™ andU ™ respectively. Then

F(J)c 1 implies f(I")cJ".

Remark1.7% Forasubspace V of U let resy U™ — V"
betherestrictionmap whichisthus defined by res,l// W )=u"\V
forall u” € U” . Notice that Ker(res; )=V ". Hence

U’ / V* =V" as vector spaces. Therefore we have the
formula Dim(U*/Vl) =Dim(V") In particular ¥ "is a

cofinite subspace of U " if and only if V is a finite-dimensional

subspace of

U . Also notice that reSIl,] =i ,where i:V — U is the
inclusion map.

Definition1.8 acH, aoeH", beH,
define endomorphisms L(a") and R(a”) in End(H) by
L@ yb)y=a"—>b and R(a’]| b)=b<a", onthe
other hand, /(a)and r(a) in End(H) by l(a} b)=a
and r(a b)=t

Proposition 1.9%1 Suppose that S is the antipode of H.
Let A bea left integral for / and @ be a right integral for H *
which satisfy < A,w > 1. Then

F (r(a)eS’oR(a") = w,ax a",A> for all
acH, a"eH".

The o eH" defined by
o, (a)=T (r(a)oS?) forall a € H is aright integral for
H.

Proposition 1.10%! Suppose that S is the antipode of H.

For

functional

Then the following are equivalent:

H and H " are semisimple.

F(S*)=0.

Proposition 1.11) Suppose that S is the antipode of H.

Let g and & be the distinguished grouplike elements for
H and H" respectively. Then S* =7 2 © (r - )

or equivalently, S*(a)=g(a > a < a ' )g™", forall
aeH.

If H and H " are unimodular , in particular if H and H

are semisimple, then §* =1 i
F (8*)=(Dim(H) F (S*|, H).
Theorem 1.121 Let H be a Hopf algebra over K. Then the

following are equivalent:

All left H — comodules are completely reducible.

<A,1% O for some ﬂejr.

H = K1® C for some subcoalgebra C of H .

<A,1%# O0forsome A€ Il

Allright H — comodules are completely reducible.

Theorem 1.13!' Let H beacosemisimple Hopfalgebra with
antipode S. Then S*(C) = C for all simple subcoalgebras C

of H.
2. The order of the antipode

Lemma 2.1
neGH") geG(H) m,ne H" and
that m —> X =x <= n. Then m € L,and n € R,.
Proof Let h*,g" € H".Then
(" h'my x)= Y (&Y xm(x,)
=(g'h}y g
=g (g)h’(g)
=D & (m(x,)x)h’(2)
=(g"h"(g)m] x)
which shows that (g (h'm—h"(g)m))(x)=0, so
(W"'m—h"(g)mj x < H")=0.But
x<— H =H, L <n=L,
L. < H" = H (applied for the dual of H? ). This

Suppose

X € LT7 such

since and
shows that &’m =h"(g)m, and so m e L,. The fact
thatn € R o 1s proved in a similar way.

Corollary 2.2 If me H",x € L_,and m —> x =1, then
melL and x <—m=d.

Proof If 1" € H”, then

(e m) = I (e ()

=(f "} x)
= h(d)m(x)
h" (m(x)d)

Applying £ to the relation Z m(x,)x, =1 we get
m(x)=1. This shows thatx «—m =d. The fact that
m € L, is proved by Lemma 2.1.

Lemma 2.3 Suppose x€L,, g€G(H) meH"
such that m — x = g. Then for any
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h* € H' wehave n(g)h" (1) =Y 1" (x,)m(g ,).
Proof ~ From the fact that A(h")= Zhl* ®h, ,
g=m—>xand 17(g)x =g ,wehave
n(h" ()= n()h' (g V5 (g)
= ' (g7 (m(x,)x1(g)
=h' (g Oh(m(g ,)g )
=Y h'(g'g Im(g ,)
= Zh*()ﬁ)m(g 2)
Lemma 2.4 Let xeL,, geG(H) me H", and
n € G(H") such that m — x = g. Then
heH we
S(g'n—>h) =(m<h)—>x.
Proof If h* € H". Then
R (S(g™'(n = h)) =D h*(S(h)m(hy)
=>"n(g)h" (S(h)gm(g'h,)
=n(g)((W"S)ny g"'h)
= > (hS)nt g " hmn(g)hs (1)
= Z( h'S)ni g_lh)h; (m(g ,)x,)
= Z (h'SY g_lhl )U(g_lhz)hf (m(g ,)x)
=2 Sk, (m(g ~'hx,)g ™ hyx;)
=D 1 (S(h)g ~hyxym(hyx,)
= Zh*(xlm(k 2)
=h"(m<«h)—>x).
Remark 2.5 If we write the formula from Lemma?2.4 for the

Hopfalgebras H, H“? ,H” “” and H? ,we get that for any
h € H the following relations hold:

for any have

Suppose xelL,m—>x=g, then
S(g''(n—=h) =(m«—h)>x;
Suppose XER, ,m—>x=g, then
S (n-o>hgH=h->m)-x
Suppose XER ,x<n=g, then
S(hengH=x«(h—n)
Suppose xelL ,x«<n=g, then

SN g (h<n) =x < (n<h)
In particular
IfxelL ,m—>x=1,thenS(h)=(m<h)—>x
@.1)
If xeR,=L,,m—>x=1, then
SN a—-h=Mh->m—-x (2
If xeR, =L ,x<n=d, then
S(h—a)d)=x«(h—n) @3
If xel ,x<—n=g, then
S (g 'h)y=x—(n<h) (2.4
Theorem 2.6 For any heH we have
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S*hy=d(a—>h—a)d.

Proof  Suppose xe€L =R ,and meH" with
m —> x =1. Corollary 2.2 shows that m € L, and m € L,
and x <— m = d . Moreover, we have

(S*(h) = m)— x=S"(a — S*(h)

(by (2.2))
= S(S* (@ — h)
—S(S* (@ h)
=(m< S (a—>h) —>x (by
2.1))

Since the map from H™ to H, sending h" € H to
h* — x € H is bijective, we obtain
S*hy>m=m«S*(a—>h).
On the other hand,
x—(m«S*(a—>h) =S"'(d'S*(a = h)
(by (2.4))
=S87(S*(d " (a — h)))
=S(d " (o = h)
=S(d N (a—>hd
=S(d (@ = h<a™M)d)«a)d™)
=x«(d'(a—=>h<a)d)—>m)
(by (2.3))
Since the map h" > (x<h")from H toH s
bijective, we obtain that
me—S(a—-h=d (a>h—a)d)—>m
We got that
S*hy->m=d (a>h—a)d)—>m
then the formula follows from the bijectivity of the map
h> (h— m)from HtoH" .
Theorem 2.7 Let H be a finite dimensional Hopf algebra.
Then the antipode S has finite order.
Proof By Theorem 2.6, we obtain by induction that
S(hy=d™"(@" = h<a™")d"
for any positive integer 1. Since G(H )and G(H") are
finite groups, their elements have finite orders, so there exists p
forwhich d” =1 and @’ = €. Thenit follows that $* = 1.
3 Characterizations of semisimple Hopf
algebras
Semisimlpe Hopf algebras are finite-dimsnsional by part (2)
of Lemma 1.3. We characterize finite-dimensional Hopf algebras
which are semisimple in the algebraically closed characteristic
zero case. To this end we calculate a trace.
Lemma3.1 If C is a simple coalgebra over K, and T is a
diagonalizable coalgebra automozphism of Cr; The
F(M=Q A2 AH
where A,,4,,-++, A, are eigenvalues for 7T .
Proof By lemmal.5 we obtain that C = C, (K) for some
7 > 1. Thus we may assume



C=C, (K). The crux of the proof will be to show that
there is a simple left coideal M of C

such that (M) € M. Necesarily Dim(M) = n.

T"is an algebra automorphism of C* =M, (K)
By Skolem-Noether Theorem, there is an invertible matrix
ue M, (K) suchthat T*(a) = uau™ forall a e M, (K)
Identify C* =M (K) with End(V),where V is an n—
dimensional vector space over K. Since K is algebraically
closed, u has an eigenvalue A € K. Let v € V' be a non-zero
vector satisfying u(}V') = Av. Regard End(V)andV as left
End (V') — modules via function composition and evaluation
respectively. Then V" is a simple module and the evaluation map

e, :End(V)—>V given by e, (a)=a(v) for all
aecEnd(V)

is a module map. Therefore
L=Ker(e,)={a e End(V)|a(v) = 0} is a maximal left
ideal of

End(V)of codimension n”>—n. Observe that
T*(L)c L. Set M = L*.Then M is a minimal left coideal
of C by Lemma 1.4 and T(M )< M by Lemma 1.6. and
Using Remark1.7 we see that Dim(M ) = n.

Since T is diagonalizable and T (M) < M it follows that
the restriction T’ |M is diagonalizable. Let {m,,m,,---,m,}
be a basis of eigenvectors for T’ |M andlet A,---,4 € K

satisfy 7' (m;) = A,m, forall 1 <i<n. Then A,---, 4,
are non-zer scalars since T|M is noe-

one. Foreach 1 <i <n write A(m,) = z; ¢, ®m,.
Then the ¢; ;’s satisfy the comatrix identities and thus span a
non-zero subcoalgebra D of C'. Since C'is simple D = C.
Since

Dim(C) = n* necessarily the ¢, ;s from a basis for C.
Applying T & T to both sides of the

equation for

Zj‘:l Ac,; ®m; = Z::l I(e, ) )®A;m,.
I(c,

A(m,) yields
Therefore

5 A—1 .. .
A ¢ forall 1 <4, j < n. Since {c¢
for C we calculat

r (T) - ZZ;:l ;"“iﬂ’;l - (Z; /11'][ Z?:l 2’;1)

Theorem 3.2 Let H be a Hopf algebra with antipode S
over K . Then the following are equivalent.

i’j}lgi,jén is a basis

H is cosemisimple.

F(S*)=0.

H is semisimple.

S*=1,.

w:H — K defined by w(a)=1F (r(a)
a € H isaright integral for H.

Proof (1)=>(2). Since H is cosemisimple it is the
direct sum of its simple subcoalgebras . Let C' be a simple
subcoalgebra of H . Then S(C) = C By Theorem1.13 . Now
S? has finite order by part (1) of Theorem Propositionl.11.

for all

Since K is algebraically closed of
characteristic  zero  S® s diagonalizable.  Thus
n n —
F(SH)= (Zl_zl A4 zi:l A') where A+, A are roots
of unity by Lemma 3.1. Since the characteristic of K is zero we
may assume that A,,+-, 4, €C, the field of compex mubers.
Thus

F (0= (X, 20 XA = (228 X202 4]

is a  non-negative  real number.  Therefore
F(S)= 1+ZCT (S2|C) >1, where C runs over the
simple subcoalgebras C # K1of H . We have shown that
F (S2)#0.

(2)= (3). It is pretty obvious by Proposition1.10.

(3)=>(4). Assume that H is semisimple. Then H "is
cosemisimple. We have just show H *

is semisimple; thus A is semisimple and
cosemisimple. In particular# (S*)#0. Now ¥ (S°)
=(Dim(H) ¥ (S Z‘X” H) by part (3) of Proposition
1.11 and S* = 1,, by part (2) of Porpositionl.11. Since the
characteristic of K is not 2, the last equation implies S “isa

diagonalizable endomorphism of H with eigenvalues *1.
Choose a basis of eigenvectors for S > Let n . be the number
of basis vectors belonging to the eigenvalue 1 and let 7_be
the number belonging to -1. By the preceding trace formula
n, —n_=(n, +n_)mfor some integer m which is not zero
since # (S?) # 0 .Squaring both sides of this equation yields

—2n.n_=(m’ -’ +2m’n.n_+(m* —1)n> > 0.

Therefore n,n_ = 0.Since n, # 0 necessarily n_ =0.
We have shown S* =1,,

(4)=> (5). That it is very simple follows by part (2) of Prop-
osition1.9.

(5)=(1). Since @(1) = Dim(H )1 # 0, thus our proofis
complete by Theorem1.12.
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