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1. Introduction
Throughout this paper K is a algebraically closed field and 

has characteristic0, H is a finite -dimensional −K Hopf
algebra with antipode S which is a diagonalizable operator and 
C is a −K

coalgebra . There is a convenient adaptation of the 

Heyneman–Sweedler[1] singma notation for coalgebras 

and comodules as (1) (2)
( )∆ = ⊗∑c c c  and 

( 1) (0)( )ρ −= ⊗ ∀ ∈∑c c c c C . 

Definition1.1[1]  A grouplike elements of C is a Cc∈ which 

satisfies the following conditions: ccc ⊗=∆ )(  and ,1)( =cε  

the set of grouplike elements of C  is denoted )(CG .
We firstly recall the following actions as module structures:

∗H is a left −H module via )())(( ghhghh ∗∗ =→  
for .,, ∗∗ ∈∈ HhHgh

∗H is a rigt −H module via )())(( hghghh ∗∗ =←  
for .,, ∗∗ ∈∈ HhHgh  

H is a left h −∗H module via 12 )( hhhhh ∑ ∗∗ =→  
for ., HhHh ∈∈ ∗∗

H is a right −∗H module via 21)( hhhhh ∑ ∗∗ =←
for ., HhHh ∈∈ ∗∗

If Hg∈ is a grouplike element as in Definition1.1, we can 
denote by

           mghmhHmLg )({ ∗∗∗ =∈= for any }∗∗ ∈Hh  
and
 nghnhHnRg )({ ∗∗∗ =∈= for any }∗∗ ∈Hh

which are ideals of ∗H and ∫∫ ==
rl

RL ., 11  Also re-

call from[1] that gL and gR are     1-dimensional,and there ex-

ists a grouplike element d  such that 1LRd = , where d  is 

called the   distinguished grouplike. We can perform the same 

constructions on the dual algebra ∗H . More precisely, for any 

),lg()( KHAHG =∈ ∗η  we can define

                 xhhxHxL )({ ηη =∈= for any h }H∈  

                 yhyhHyR )({ ηη =∈= for any h }H∈ .

We remark that if we keep the same definition we gave for 

gL , then ηL should be a subspace 

of ∗∗H .The set ,ηL as defined above ,is just the preimage 

of this subspace via the canonical
Isomorphism .: ∗∗→ HHθ From the above it follows 

that the subspaces ηL and ηR are ideals
of dimension 1 in ,H and there exists )( ∗∈ HGα such 

that εα LR = . This element α is the 
distinguished grouplike element in .∗H  
Remark1.2[1]  If H is semisimple and cosemisimple, then 

distinguished grouplike in H and
∗H are equal to 1 and ε , respectively. 

Lemma1.3[2]  Suppose that H  is a Hopf algebra over K . 
Then

The only subspaces of H  which are both a left ideal and left 
coideal of H are }{O and

H .
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If H contains a non-zero finite -dimensional left or right 
ideal. Then H  is finite-dimensional.

Lemma1.4[3]  Let C be a finite-dimensional coalgebra 
over .K  Then ⊥UU  is a one-one inclusion reversing 
correspondence between the set of coideals (respectively 
subcoalgebras, left coideals, right coideals) of C  and the set of 
subalgebras (respectively ideals, left ideals, right ideals) of the 
dual algebra .∗C  

Lemma1.5[3]  If )(KCn  is a simple coalgebra over K  for 
all .1≥n  Then any simple coalgebra over K  is isomorphic to 

)(KCn  for some .1≥n
Lemma1.6[4]  Suppose U and V be vector spaces over K  

and ∗∗ →UVF : is the transpose of a linear map VUf →:
. If J and I are subspaces of ∗V  and ∗U  respectively. Then

IJF ⊆)(  implies ⊥⊥ ⊆ JIf )( .
Remark1.7[4]  For a subspace V of U  let ∗∗ →VUresU

V :
be the restriction map which is thus defined by VuuresU

V
∗∗ =)(  

for all ∗∗ ∈Uu . Notice that .)( ⊥=VresKer U
V  Hence 

∗⊥∗ ≅VVU  as vector spaces. Therefore we have the 
formula ).()( ∗⊥∗ = VDimVUDim  In particular ⊥V is a 
cofinite subspace of ∗U if and only if V is a finite-dimensional 
subspace of

.U Also notice that ,∗= iresU
V where UVi →: is the 

inclusion map.
Definition1.8[4]   For ,, ∗∗ ∈∈ HaHa  Hb∈ , 

define endomorphisms )( ∗aL  and )( ∗aR  in )(HEnd  by 
babaL →= ∗∗ ))((  and ∗∗ ←= abbaR ))(( , on the 

other hand, )(al and )(ar  in )(HEnd  by abbal =))((  
and babar =))(( .

Proposition 1.9[5]   Suppose that S  is the antipode of .H  
Let Λ be a left integral for H  and ω be a right integral for ∗H  
which satisfy .1, >=Λ< ω  Then

>Λ><=< ∗∗ ,,))()(( 2 aaaRSarTr ω  for all 
., ∗∗ ∈∈ HaHa

The functional ∗∈Hrω  defined by 
))(()( 2SarTrar =ω  for all Ha∈  is a right integral for 

.∗H
Proposition 1.10[5]    Suppose that S  is the antipode of .H  

Then the following are equivalent:
H  and ∗H are semisimple.

.0)( 2 ≠STr
Proposition 1.11[5]    Suppose that S  is the antipode of .H  

Let g  and α  be the distinguished grouplike elements for 

H and ∗H  respectively. Then ∗
−= )( 1

4
α
ττ gS  

or equivalently, 114 )()( −−←→= gagaS αα , for all 

Ha∈ .

If H  and ∗H are unimodular , in particular if H  and ∗H

are semisimple, then .14
HS =

)())(()( 22 HSTrHDimSTr
Hx= .

Theorem 1.12[6]  Let H  be a Hopf algebra over .K  Then the 

following are equivalent:

All left −H comodules are completely reducible.

01, >≠< λ for some ∫∈ rλ .

CKH ⊗= 1 for some subcoalgebra C of H .

01, >≠< λ for some ∫∈ lλ
All right −H comodules are completely reducible.

Theorem 1.13[6]  Let H  be a cosemisimple  Hopf algebra with 

antipode .S  Then CCS =)(2 for all simple subcoalgebras C  

of H .
2. The order of the antipode 

Lemma 2.1  Suppose 
∗∗ ∈∈∈ HnmHGgHG ,),(),(η and ηLx∈ such 

that .nxxm ←=→  Then gLm∈ and .gRn∈
Proof  Let ., ∗∗∗ ∈Hgh Then  

∑ ∗∗∗∗ = ))()(())(( 21 xmxhgxmhg
                        ))(( ghg ∗∗=       

                        )()( ghgg ∗∗=

                        ∑ ∗∗= )())(( 12 ghxxmg

                        ))()(( xmghg ∗∗=   

which shows that ,0)))()((( =− ∗∗∗ xmghmhg  so 

0))()(( =←− ∗∗∗ Hxmghmh . But 

,HHx =← ∗  since εη η LL =←  and 

HHL =← ∗
ε (applied for the dual of opH ). This

shows that ,)( mghmh ∗∗ =  and so .gLm∈  The fact 

that gRn∈ is proved in a similar way.    

Corollary 2.2  If ,, εLxHm ∈∈ ∗ and ,1=→ xm  then 

1Lm∈  and .dmx =←
Proof  If ,∗∗ ∈Hh  then 

∑ ∗∗ =← )()()( 12 xmxhmxh
                       ))(( xmh ∗=
                       )()( xmdh=
                           ))(( dxmh∗

Applyingε to the relation 1)( 12 =∑ xxm  we get 

.1)( =xm  This shows that .dmx =←  The fact that 

1Lm∈  is proved by Lemma 2.1.

Lemma 2.3  Suppose ∗∈∈∈ HmHGgLx ),(,η

such that .gxm =→  Then for any
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∗∗ ∈Hh  we have ∑ ∗∗ = )()()1()( 21 gxmxhhgη .

Proof  From the fact that ∑ ∗∗∗ ⊗=∆ 21)( hhh ,  

xmg →= and gxxg =)(η ,we have

 )()()()1()( 2
1

1 ghghghg ∗−∗∗ ∑= ηη
                      ))()(()( 122

1
1 gxxmhgh η∗−∗=

                      ))(()( 122
1

1 gxgxmhgh ∗−∗=
                      ∑ −∗= )()( 21

1 gxmgxgh
                      ∑ ∗= )()( 21 gxmxh
Lemma 2.4  Let ∗∈∈∈ HmHGgLx ),(,η , and 

)( ∗∈ HGη such that .gxm =→  Then

for any Hh∈  we have 

xhmhgS →←=→− )())(( 1 η .

Proof  If .∗∗ ∈Hh  Then

)())(()))((( 21
1 hghShhgSh ηη ∑ ∗−∗ =→  

            )())(()( 2
1

1 hgghShg −∗∑= ηη
            ))())((( 1hgShg −∗= ηη
            ∑ ∗−∗= )1()())()(( 2

1
1 hghgSh ηη

            ∑ ∗−∗= ))(())()(( 122
1

1 xgxmhhgSh η
            ∑ ∗−−∗= ))(()())(( 1222

1
1

1
1 xgxmhhghgSh η

            ∑ −−∗∗= ))(())(( 12
1

23
1

211 xhgxhggmhghSh
            ∑ −∗= ))()(( 2312

1
11 xhmxhgghSh

            ∑ ∗= ))(( 21 hxmxh
            ))(( xhmh →←= ∗ .
Remark 2.5  If we write the formula from Lemma2.4 for the 

Hopf algebras copopcop HHH ,,,  and opH ,we get that for any
Hh∈ the following relations hold:

Suppose ,, gxmLx =→∈ η  then 
;)())(( 1 xhmhgS →←=→− η

Suppose ,, gxmRx =→∈ η  then 
;)())(( 11 xmhghS →→=→ −− η

  Suppose ,, gnxRx =←∈ η  then 
);())(( 1 nhxghS →←=← −η

  Suppose ,, gnxLx =←∈ η  then 
).())(( 11 hnxhgS ←←=←−− η

In particular
             If ,1, =→∈ xmLx ε  then xhmhS →←= )()(                   

(2.1)
             If ,1, =→=∈ xmLRx εα  then 

xmhhS →→=→− )()(1 α        (2.2)
             If ,, dnxLRx =←=∈ εα  then 

)())(( 1 nhxdhS →←=← −α      (2.3)
             If ,, gnxLx =←∈ ε  then 

)()( 11 hnxhgS ←←=−−                (2.4)
Theorem 2.6  For any Hh∈  we have 

dhdhS )()( 114 −− ←→= αα .
Proof  Suppose ,αε RLx =∈ and ∗∈Hm  with 

1=→ xm . Corollary 2.2 shows that 1Lm∈  and 1Lm∈
and dmx =← . Moreover, we have

            ))(())(( 414 hSSxmhS →=→→ − α                      
(by (2.2))

                            ))(( 41 hSS →= − α
                            ))(( 2 hSS →= α  
                            xhSm →→←= ))(( 2 α                 (by 

(2.1))
 Since the map from ∗H  to H , sending ∗∗ ∈Hh to 

Hxh ∈→∗ is bijective, we obtain
                    )()( 24 hSmmhS →←=→ α .                              
On the other hand, 
           ))(())(( 2112 hSdShSmx →=→←← −− αα                

(by (2.4))
                                )))((( 121 hdSS →= −− α
                                ))(( 1 hdS →= − α
                                ))(( 11 −− →= ddhdS α
                                ))))(((( 111 −−− ←←→= ddhdS ααα
                                )))((( 11 mdhdx →←→←= −− αα       

(by (2.3))
Since the map 

∗h )( ∗← hx from ∗H to H  is 
bijective, we obtain that 

                    mdhdhSm →←→=→← −− ))(()( 112 ααα
We got that 
                  mdhdmhS →←→=→ −− ))(()( 114 αα    
then the formula follows from the bijectivity of the map 
h )( mh → from H to ∗H .     

Theorem 2.7  Let H  be a finite dimensional Hopf algebra. 
Then the antipode S  has finite order.   

Proof  By Theorem 2.6, we obtain by induction that
                        nnnnn dhdhS )()(4 −− ←→= αα
for any positive integer .n  Since )(HG and )( ∗HG  are 

finite groups, their elements have finite orders, so there exists p
for which 1=pd  and .εα =p  Then it follows that .4 IS p =       
3 Characterizations of semisimple Hopf 
algebras

Semisimlpe Hopf algebras are finite-dimsnsional by part (2) 
of Lemma 1.3. We characterize finite-dimensional Hopf algebras 
which are semisimple in the algebraically closed characteristic 
zero case. To this end we calculate a trace.

Lemma3.1  If C  is a simple coalgebra over ,K  and T is a 
diagonalizable coalgebra automorphism of C . The

                 ))(()(
1

1
1 ∑∑ =

−
=

=
n

i i
n

i iTTr λλ
where nλλλ ,,, 21  are eigenvalues for T .
 Proof  By lemma1.5 we obtain that )(KCC n≅ for some 

.1≥n Thus we may assume 
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)(KCC n= . The crux of the proof will be to show that 
there is a simple left coideal M of C

such that .)( MMT ⊆  Necesarily .)( nMDim =
∗T is an algebra automorphism of ).(KMC n=∗  

By Skolem-Noether Theorem, there is an invertible matrix 
)(KMu n∈  such that 1)( −∗ = uauaT  for all ).(KMa n∈  

Identify )(KMC n=∗  with )(VEnd ,where V is an −n
dimensional vector space over .K  Since K is algebraically 
closed, u has an eigenvalue .K∈λ  Let Vv∈ be a non-zero 
vector satisfying .)( vVu λ=  Regard )(VEnd andV as left 

−)(VEnd modules via function composition and evaluation 
respectively. Then V is a simple module and the evaluation map

VVEndev →)(:  given by  )()( vaaev =  for all 
)(VEnda∈  

is a module map. Therefore 
}0)()({)( =∈== vaVEndaeKerL v  is a maximal left 

ideal of
)(VEnd of codimension .2 nn −  Observe that 
.)( LLT ⊆∗  Set .⊥= LM Then M is a minimal left coideal 

of C  by Lemma 1.4 and MMT ⊆)( by Lemma 1.6. and 
Using Remark1.7 we see that .)( nMDim =  

Since T is diagonalizable and MMT ⊆)( it follows that 
the restriction MT  is diagonalizable. Let },,,{ 21 nmmm 

be a basis of eigenvectors for MT  and let Kn ∈λλ ,,1 

satisfy iii mmT λ=)(  for all .1 ni ≤≤  Then nλλ ,,1 

are non-zer scalars since MT is noe-
one. For each ni ≤≤1  write .)(

1 , j
n

j jii mcm ⊗=∆ ∑ =
 

Then the jic , ’s satisfy the comatrix identities and thus span a 
non-zero subcoalgebra D  of C . SinceC is simple .CD =  
Since

2)( nCDim =  necessarily the jic , ’s from a basis for C . 
Applying TT ⊗ to both sides of the

equation for )( im∆ yields 
.)(

1 ,1 , jj
n

j jij
n

j jii mcTmc λλ ⊗=⊗ ∑∑ ==
 Therefore 

=)( , jicT
jiji c ,

1−λλ for all .,1 nji ≤≤  Since njijic ≤≤ ,1, }{ is a basis 
for C  we calculat  

               ).)(()(
1

1
11,

1 ∑∑∑ =
−

==
− ==

n

i i
n

i i
n

ji jiTTr λλλλ
       

Theorem 3.2  Let H  be a Hopf algebra with antipode S  
over K . Then the following are equivalent.

H  is cosemisimple.
.0)( 2 ≠STr

H  is semisimple.
.12

HS =
KH →:ω  defined by ))(()( arTra =ω  for all 

Ha∈  is a right integral for .H
Proof  (1)⇒ (2). Since H  is cosemisimple it is the 

direct sum of its simple subcoalgebras . Let C  be a simple 
subcoalgebra of H . Then CCS =)(  By Theorem1.13 . Now 

2S  has finite order by part (1) of Theorem Proposition1.11. 

Since K  is algebraically closed of 
characteristic zero 2S  is diagonalizable. Thus 

))(()(
1

1
1

2 ∑∑ =
−

=
=

n

i i
n

i iSTr λλ  where nλλ ,,1   are roots 
of unity by Lemma 3.1. Since the characteristic of K  is zero we 
may assume that ∈nλλ ,,1  C, the field of compex mubers. 
Thus 

        2

1111
1

1
2 ))(())(()( ∑∑∑∑∑ ====

−
=

===
n

i i
n

i i
n

i i
n

i i
n

i iCSTr λλλλλ

is a non-negative real number. Therefore 

∑ ≥+=
C

CSTrSTr ,1)(1)( 22  where C  runs over the 
simple subcoalgebras 1KC ≠ of H . We have shown that 

0)( 2 ≠STr .
(2)⇒ (3). It is pretty obvious by Proposition1.10. 
(3)⇒ (4). Assume that H  is semisimple. Then ∗H is 

cosemisimple. We have just show ∗H
is semisimple; thus H  is semisimple and 

cosemisimple. In particular 0)( 2 ≠STr . Now )( 2STr
)())(( 2 HSTrHDim

Hx=  by part (3) of Proposition 
1.11 and HS 14 =  by part (2) of Porposition1.11. Since the 
characteristic of K  is not 2, the last equation implies 2S  is a 
diagonalizable endomorphism of H  with eigenvalues .1±  
Choose a basis of eigenvectors for 2S . Let +n be the number 
of basis vectors belonging to the eigenvalue 1 and let −n be 
the number belonging to -1. By the preceding trace formula 

mnnnn )( −+−+ +=− for some integer m which is not zero 
since 0)( 2 ≠STr .Squaring both sides of this equation yields

              .0)1(2)1(2 22222 ≥−++−=− −−++−+ nmnnmnmnn

Therefore .0=−+nn Since 0≠+n  necessarily .0=−n
We have shown .

2 1HS =
 (4)⇒ (5). That it is very simple follows by part (2) of Prop-

osition1.9. 
 (5)⇒ (1). Since ,01)()1( ≠= HDimω  thus our proof is 

complete by Theorem1.12.   
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