DOI: 10.18686/ahe.v6i15.5134

Finite-Dimensional Hopf Algebras

Yuqiu Wei ${ }^{1}$, Beishang Ren ${ }^{2 \text { Corresponding Author }}$
1. Guangxi University of Foreign Languages, Nanning 530222, Guangxi China
2. Software Engineering Institute of Guangzhou, Guangzhou 510990, Guangdong China

Abstract

This paper mainly discussed various characterizations for the finite-dimensional Hopf algebras over algebraically closed field and has characteristic 0 . And further showed that the order of antipode of the Hopf algebras is finite, but also provides a hint on how to estimate the order of the antipodes. Keywords: Finite-dimensional Hopf algebras; Order of the antipode ; Trace; Semisimple; Cosemisimple; Eigenvalue; Distinguished grouplike

Fund project: Project supported by Research Program of Software Engineering Institute of Guangzhou (KY202110) .

1. Introduction

Throughout this paper K is a algebraically closed field and has characteristic $0, H$ is a finite -dimensional K-Hopf algebra with antipode S which is a diagonalizable operator and C is a $K-$
coalgebra . There is a convenient adaptation of the Heyneman-Sweedler ${ }^{[1]}$ singma notation for coalgebras and comodules as $\quad \Delta(c)=\sum c_{(1)} \otimes c_{(2)} \quad$ and $\rho(c)=\sum c_{(-1)} \otimes c_{(0)} \quad \forall c \in C$.

Definition1.1 ${ }^{[1]}$ A grouplike elements of C is a $c \in C$ which satisfies the following conditions: $\Delta(c)=c \otimes c$ and $\varepsilon(c)=1$, the set of grouplike elements of C is denoted $G(C)$.

We firstly recall the following actions as module structures:
H^{*} is a left $H-$ module $\operatorname{via}\left(h \rightarrow h^{*} \ell g\right)=h^{*}(g)$ for $h, g \in H, h^{*} \in H^{*}$.
H^{*} is a rigt $H-$ module $\operatorname{via}\left(h \leftarrow h^{*} \ell g\right)=h^{*}(g)$ for $h, g \in H, h^{*} \in H^{*}$.
H is a left $\mathrm{h} H^{*}-$ module via $h^{*} \rightarrow h=\sum h^{*}\left(h_{2}\right) h_{1}$ for $h^{*} \in H^{*}, h \in H$.
H is a right H^{*} - module via $h \leftarrow h^{*}=\sum h^{*}\left(h_{1}\right) h_{2}$ for $h^{*} \in H^{*}, h \in H$.

If $g \in H$ is a grouplike element as in Definition1.1, we can denote by

$$
L_{g}=\left\{m \in H^{*} \mid h^{*} m=h^{*}(g) m \text { for any } h^{*} \in H^{*}\right\}
$$

and

$$
R_{g}=\left\{n \in H^{*} \mid h^{*}=h^{*}(g) n \text { for any } h^{*} \in H^{*}\right\}
$$

which are ideals of H^{*} and $L_{1}=\int_{l}, R_{1}=\int_{r}$. Also recall from ${ }^{[1]}$ that L_{g} and R_{g} are 1-dimensional, and there exists a grouplike element d such that $R_{d}=L_{1}$, where d is called the distinguished grouplike. We can perform the same constructions on the dual algebra H^{*}. More precisely, for any $\eta \in G\left(H^{*}\right)=A \lg (H, K)$ we can define

$$
\begin{aligned}
& L_{\eta}=\{x \in H \mid k=\eta(h) x \text { for any } h \in H\} \\
& R_{\eta}=\{y \in H \mid \not h=\eta(h) y \text { for any } h \in H\} .
\end{aligned}
$$

We remark that if we keep the same definition we gave for L_{g}, then L_{η} should be a subspace
of $H^{* *}$.The set L_{η}, as defined above, is just the preimage of this subspace via the canonical

Isomorphism $\theta: H \rightarrow H^{* *}$. From the above it follows that the subspaces L_{η} and R_{η} are ideals
of dimension 1 in H, and there exists $\alpha \in G\left(H^{*}\right)$ such that $R_{\alpha}=L_{\varepsilon}$. This element α is the
distinguished grouplike element in H^{*}.
Remark1.2 ${ }^{[1]}$ If H is semisimple and cosemisimple, then distinguished grouplike in H and
H^{*} are equal to 1 and ε, respectively.
Lemma1.3 ${ }^{[2]}$ Suppose that H is a Hopf algebra over K.
Then
The only subspaces of H which are both a left ideal and left coideal of H are $\{O\}$ and
H.

If H contains a non-zero finite -dimensional left or right ideal. Then H is finite-dimensional.

Lemma1.4 ${ }^{[3]}$ Let C be a finite-dimensional coalgebra over K. Then $U \mapsto U^{\perp}$ is a one-one inclusion reversing correspondence between the set of coideals (respectively subcoalgebras, left coideals, right coideals) of C and the set of subalgebras (respectively ideals, left ideals, right ideals) of the dual algebra C^{*}.

Lemma1. ${ }^{[3]}$ If $C_{n}(K)$ is a simple coalgebra over K for all $n \geq 1$. Then any simple coalgebra over K is isomorphic to $C_{n}(K)$ for some $n \geq 1$.

Lemma1. $6^{[4]}$ Suppose U and V be vector spaces over K and $F: V^{*} \rightarrow U^{*}$ is the transpose of a linear map $f: U \rightarrow V$. If J and I are subspaces of V^{*} and U^{*} respectively. Then $F(J) \subseteq I$ implies $f\left(I^{\perp}\right) \subseteq J^{\perp}$.
Remark1. $7^{[4]}$ For a subspace V of U let $\operatorname{res}_{V}^{U}: U^{*} \rightarrow V^{*}$ betherestrictionmap whichisthusdefinedby $\operatorname{res}_{V}^{U}\left(u^{*}\right)=u^{*} \mid V$ for all $u^{*} \in U^{*}$. Notice that $\operatorname{Ker}\left(\operatorname{res}_{V}^{U}\right)=V^{\perp}$. Hence
$U^{*} / V^{\perp} \cong V^{*}$ as vector spaces. Therefore we have the formula $\operatorname{Dim}\left(U^{*} / V^{\perp}\right)=\operatorname{Dim}\left(V^{*}\right)$ In particular V^{\perp} is a cofinite subspace of U^{*} if and only if V is a finite-dimensional subspace of
U. Also notice that $r e s_{V}^{U}=i^{*}$, where $i: V \rightarrow U$ is the inclusion map.

Definition1.8 ${ }^{[4]} \quad$ For $\quad a \in H, a^{*} \in H^{*}, \quad b \in H$, define endomorphisms $L\left(a^{*}\right)$ and $R\left(a^{*}\right)$ in $\operatorname{End}(H)$ by $L\left(a^{*} \gamma b\right)=a^{*} \rightarrow b \quad$ and $R\left(a^{*} \gamma b\right)=b \leftarrow a^{*}$, on the other hand, $l(a)$ and $r(a)$ in $\operatorname{End}(H)$ by $l(a \gamma b)=\boldsymbol{b}$ and $r(a \gamma)=b$.

Proposition 1.9 ${ }^{[5]}$ Suppose that S is the antipode of H. Let Λ be a left integral for H and ω be a right integral for H^{*} which satisfy $\langle\Lambda, \omega \geqslant 1$. Then
$\boldsymbol{F}\left(r(a) \circ S^{2} \circ R\left(a^{*}\right) \nless \omega, a \nless a^{*}, \Lambda>\right.$ for all $a \in H, a^{*} \in H^{*}$.

The functional $\omega_{r} \in H^{*}$ defined by $\omega_{r}(a)=\mathscr{H}\left(r(a) \circ S^{2}\right)$ for all $a \in H$ is a right integral for H^{*}.

Proposition $1.10{ }^{[5]}$ Suppose that S is the antipode of H. Then the following are equivalent:
H and H^{*} are semisimple.
F $\left(S^{2}\right) \neq 0$.
Proposition $1.11^{[5]}$ Suppose that S is the antipode of H.
Let g and α be the distinguished grouplike elements for H and H^{*} respectively. Then $S^{4}=\tau_{g} \circ\left(\tau_{\alpha^{-1}}\right)^{*}$
or equivalently, $S^{4}(a)=g\left(\alpha \rightarrow a \leftarrow \alpha^{-1}\right) g^{-1}$, for all $a \in H$.

If H and H^{*} are unimodular, in particular if H and H^{*}
are semisimple, then $S^{4}=1_{H}$.

$$
\boldsymbol{T}\left(S^{2}\right)=\left(\operatorname{Dim}(H) \mathscr{F}\left(\left.S^{2}\right|_{x_{H}} H\right) .\right.
$$

Theorem $1.12{ }^{[6]}$ Let H be a Hopf algebra over K. Then the following are equivalent:

All left H-comodules are completely reducible.
$<\lambda, 1 \neq 0$ for some $\lambda \in \int^{r}$.
$H=K 1 \otimes C$ for some subcoalgebra C of H.
$<\lambda, 1 \neq 0$ for some $\lambda \in \int^{l}$
All right H - comodules are completely reducible.
Theorem $1.13{ }^{[6]}$ Let H be a cosemisimple Hopfalgebra with antipode S. Then $S^{2}(C)=C$ for all simple subcoalgebras C of H.

2. The order of the antipode

Lemma 2.1 Suppose
$\eta \in G\left(H^{*}\right) \quad g \in G(H) \quad m, n \in H^{*}$ and $\quad x \in L_{\eta}$ such that $m \rightarrow x=x \leftarrow n$. Then $m \in L_{g}$ and $n \in R_{g}$.

Proof Let $h^{*}, g^{*} \in H^{*}$. Then

$$
\begin{aligned}
\left(g^{*} h^{*} m \ell x\right) & =\sum\left(g^{*} h^{*} \ell x_{1} m\left(x_{2}\right)\right. \\
& =\left(g^{*} h^{*} \ell g\right) \\
& =g^{*}(g) h^{*}(g) \\
& =\sum g^{*}\left(m\left(x_{2}\right) x_{1}\right) h^{*}(g) \\
& =\left(g^{*} h^{*}(g) m \ell x\right)
\end{aligned}
$$

which shows that $\left(g^{*}\left(h^{*} m-h^{*}(g) m\right)\right)(x)=0$, so $\left(h^{*} m-h^{*}(g) m \chi x \leftarrow H^{*}\right)=0$. But
$x \leftarrow H^{*}=H, \quad$ since $\quad L_{\eta} \leftarrow \eta=L_{\varepsilon} \quad$ and $L_{\varepsilon} \leftarrow H^{*}=H$ (applied for the dual of H^{p}). This
shows that $h^{*} m=h^{*}(g) m$, and so $m \in L_{g}$. The fact that $n \in R_{g}$ is proved in a similar way.

Corollary 2.2 If $m \in H^{*}, x \in L_{\varepsilon}$, and $m \rightarrow x=1$, then $m \in L_{1}$ and $x \leftarrow m=d$.

Proof If $h^{*} \in H^{*}$, then

$$
\begin{aligned}
h^{*}(x \leftarrow m)= & \sum h^{*}\left(x_{2}\right) m\left(x_{1}\right) \\
= & \left(m^{*}(x)\right. \\
= & h(d) m(x) \\
& h^{*}(m(x) d)
\end{aligned}
$$

Applying ε to the relation $\sum m\left(x_{2}\right) x_{1}=1$ we get $m(x)=1$. This shows that $x \leftarrow m=d$. The fact that $m \in L_{1}$ is proved by Lemma 2.1.

Lemma 2.3 Suppose $x \in L_{\eta}, \quad g \in G(H) \quad m \in H^{*}$ such that $m \rightarrow x=g$. Then for any
$h^{*} \in H^{*}$ we have $\eta(g) h^{*}(1)=\sum h^{*}\left(x_{1}\right) m\left(g_{2}\right)$.
Proof From the fact that $\Delta\left(h^{*}\right)=\sum h_{1}^{*} \otimes h_{2}^{*}$, $g=m \rightarrow x$ and $\eta(g) x=\Phi \quad$,we have

$$
\begin{aligned}
\eta(g) h^{*}(1) & =\sum \eta(g) h_{1}^{*}\left(g^{-1}\right) h_{2}^{*}(g) \\
& =h_{1}^{*}\left(g^{-1}\right) h_{2}^{*}\left(m\left(x_{2}\right) x_{1} \eta(g)\right. \\
& =h_{1}^{*}\left(g^{-1}\right) h_{2}^{*}\left(m\left(g_{2}\right) g_{1}\right) \\
& =\sum h^{*}\left(g^{-1} g_{1}\right) m\left(g_{2}\right) \\
& =\sum h^{*}\left(x_{1}\right) m\left(g_{2}\right)
\end{aligned}
$$

Lemma 2.4 Let $x \in L_{\eta}, \quad g \in G(H) \quad m \in H^{*}$, and $\eta \in G\left(H^{*}\right)$ such that $m \rightarrow x=g$. Then
for any $\quad h \in H \quad$ we have $S\left(g^{-1}(\eta \rightarrow h)=(m \leftarrow h) \rightarrow x\right.$.

Proof If $h^{*} \in H^{*}$. Then

$$
\begin{aligned}
h^{*}(S & \left.\left(g^{-1}(\eta \rightarrow h)\right)\right)=\sum h^{*}\left(S\left(h_{1}\right) g\right) \eta\left(h_{2}\right) \\
& =\sum \eta(g) h^{*}\left(S\left(h_{1}\right) g\right) \eta\left(g^{-1} h_{2}\right) \\
& =\eta(g)\left(\left(h^{*} S\right) \eta\left(g^{-1} h\right)\right. \\
& \left.=\sum\left(h_{1}^{*} S\right) \eta \gamma g^{-1} h\right) \eta(g) h_{2}^{*}(1) \\
& \left.=\sum\left(h_{1}^{*} S\right) \eta \gamma g^{-1} h\right) h_{2}^{*}\left(m\left(g_{2}\right) x_{1}\right) \\
& \left.=\sum\left(h_{1}^{*} S\right\rangle g^{-1} h_{1}\right) \eta\left(g^{-1} h_{2}\right) h_{2}^{*}\left(m\left(g_{2}\right) x_{1}\right) \\
& =\sum h_{1}^{*}\left(S\left(h_{1}\right) g\right) h_{2}^{*}\left(m\left(g^{-1} h_{3} x_{2}\right) g^{-1} h_{2} x_{1}\right) \\
& =\sum h_{1}^{*}\left(S\left(h_{1}\right) g^{-1} h_{2} x_{1} m\left(h_{3} x_{2}\right)\right. \\
& =\sum h^{*}\left(x_{1} m\left(k_{2}\right)\right. \\
& \left.=h^{*}(m \leftarrow h) \rightarrow x\right) .
\end{aligned}
$$

Remark 2.5 If we write the formula from Lemma2.4 for the Hopf algebras $H, H^{c o p}, H^{\rho, c o p}$ and H^{φ}, we get that for any $h \in H$ the following relations hold:

Suppose $\quad x \in L_{\eta}, m \rightarrow x=g, \quad$ then $S\left(g^{-1}(\eta \rightarrow h)=(m \leftarrow h) \rightarrow x ;\right.$

Suppose $\quad x \in R_{\eta}, m \rightarrow x=g, \quad$ then $\left.S^{-1}(\eta \rightarrow h) g^{-1}\right)=(h \rightarrow m) \rightarrow x ;$

Suppose $\quad x \in R_{\eta}, x \leftarrow n=g, \quad$ then $\left.S(h \leftarrow \eta) g^{-1}\right)=x \leftarrow(h \rightarrow n)$

Suppose $\quad x \in L_{\eta}, x \leftarrow n=g, \quad$ then
$S^{-1}\left(g^{-1}(h \leftarrow \eta)=x \leftarrow(n \leftarrow h)\right.$
In particular
If $x \in L_{\varepsilon}, m \rightarrow x=1$, then $S(h)=(m \leftarrow h) \rightarrow x$ (2.1)

If $x \in R_{\alpha}=L_{\varepsilon}, m \rightarrow x=1$, then $S^{-1}(\alpha \rightarrow h)=(h \rightarrow m) \rightarrow x \quad$ (2.2)

If $x \in R_{\alpha}=L_{\varepsilon}, x \leftarrow n=d$, then $\left.S(h \leftarrow \alpha) d^{-1}\right)=x \leftarrow(h \rightarrow n) \quad(2.3)$

If $x \in L_{\varepsilon}, x \leftarrow n=g$, then $S^{-1}\left(g^{-1} h\right)=x \leftarrow(n \leftarrow h)$

Theorem $2.6 \quad$ For any $h \in H \quad$ we have

$$
S^{4}(h)=d^{-1}\left(\alpha \rightarrow h \leftarrow \alpha^{-1}\right) d
$$

Proof Suppose $x \in L_{\varepsilon}=R_{\alpha}$, and $m \in H^{*}$ with $m \rightarrow x=1$. Corollary 2.2 shows that $m \in L_{1}$ and $m \in L_{1}$ and $x \leftarrow m=d$. Moreover, we have

$$
\left(S^{4}(h) \rightarrow m\right) \rightarrow x=S^{-1}\left(\alpha \rightarrow S^{4}(h)\right.
$$

(by (2.2))

$$
\begin{align*}
& =S^{-1}\left(S^{4}(\alpha \rightarrow h)\right. \\
& =S\left(S^{2}(\alpha \rightarrow h)\right. \\
& =\left(m \leftarrow S^{2}(\alpha \rightarrow h) \rightarrow x\right.
\end{align*}
$$

Since the map from H^{*} to H, sending $h^{*} \in H^{*}$ to $h^{*} \rightarrow x \in H$ is bijective, we obtain

$$
S^{4}(h) \rightarrow m=m \leftarrow S^{2}(\alpha \rightarrow h)
$$

On the other hand,

$$
x \leftarrow\left(m \leftarrow S^{2}(\alpha \rightarrow h)=S^{-1}\left(d^{-1} S^{2}(\alpha \rightarrow h)\right.\right.
$$

(by (2.4))

$$
\begin{align*}
= & S^{-1}\left(S^{2}\left(d^{-1}(\alpha \rightarrow h)\right)\right) \\
& =S\left(d^{-1}(\alpha \rightarrow h)\right. \\
& =S\left(d^{-1}(\alpha \rightarrow h) d^{-1}\right) \\
=S & \left(\left(\left(d^{-1}\left(\alpha \rightarrow h \leftarrow \alpha^{-1}\right) d\right) \leftarrow \alpha\right) d^{-1}\right) \\
=x & \left.\leftarrow\left(d^{-1}\left(\alpha \rightarrow h \leftarrow \alpha^{-1}\right) d\right) \rightarrow m\right) \tag{2.3}
\end{align*}
$$

Since the map $h^{*} \mapsto\left(x \leftarrow h^{*}\right)$ from H^{*} to H is bijective, we obtain that

$$
m \leftarrow S^{2}(\alpha \rightarrow h)=\left(d^{-1}\left(\alpha \rightarrow h \leftarrow \alpha^{-1}\right) d\right) \rightarrow m
$$

We got that

$$
S^{4}(h) \rightarrow m=\left(d^{-1}\left(\alpha \rightarrow h \leftarrow \alpha^{-1}\right) d\right) \rightarrow m
$$

then the formula follows from the bijectivity of the map $h \mapsto(h \rightarrow m)$ from H to H^{*}.

Theorem 2.7 Let H be a finite dimensional Hopf algebra. Then the antipode S has finite order.

Proof By Theorem 2.6, we obtain by induction that

$$
S^{4 n}(h)=d^{-n}\left(\alpha^{n} \rightarrow h \leftarrow \alpha^{-n}\right) d^{n}
$$

for any positive integer n. Since $G(H)$ and $G\left(H^{*}\right)$ are finite groups, their elements have finite orders, so there exists p for which $d^{p}=1$ and $\alpha^{p}=\varepsilon$. Then it follows that $S^{4 p}=I$.

3 Characterizations of semisimple Hopf algebras

Semisimlpe Hopf algebras are finite-dimsnsional by part (2) of Lemma 1.3. We characterize finite-dimensional Hopf algebras which are semisimple in the algebraically closed characteristic zero case. To this end we calculate a trace.

Lemma3.1 If C is a simple coalgebra over K, and T is a diagonalizable coalgebra automorphism of C. The

$$
\boldsymbol{F}(T)=\left(\sum_{i=1}^{n} \lambda_{i} \gamma \sum_{i=1}^{n} \lambda_{i}^{-1}\right)
$$

where $\lambda_{1}, \lambda_{2}, \cdots, \lambda_{n}$ are eigenvalues for T.
Proof By lemma1.5 we obtain that $C \cong C_{n}(K)$ for some $n \geq 1$. Thus we may assume
$C=C_{n}(K)$. The crux of the proof will be to show that there is a simple left coideal M of C
such that $T(M) \subseteq M$. Necesarily $\operatorname{Dim}(M)=n$.
T^{*} is an algebra automorphism of $C^{*}=M_{n}(K)$ By Skolem-Noether Theorem, there is an invertible matrix $u \in M_{n}(K)$ such that $T^{*}(a)=u a u^{-1}$ for all $a \in M_{n}(K)$ Identify $C^{*}=M_{n}(K)$ with $\operatorname{End}(V)$, where V is an $n-$ dimensional vector space over K. Since K is algebraically closed, u has an eigenvalue $\lambda \in K$. Let $v \in V$ be a non-zero vector satisfying $u(V)=\lambda v$. Regard $\operatorname{End}(V)$ and V as left $\operatorname{End}(V)$ - modules via function composition and evaluation respectively. Then V is a simple module and the evaluation map
$e_{v}: \operatorname{End}(V) \rightarrow V$ given by $e_{v}(a)=a(v)$ for all $a \in \operatorname{End}(V)$
is a module map. Therefore $L=\operatorname{Ker}\left(e_{v}\right)=\{a \in \operatorname{End}(V) \mid a(v)=0\}$ is a maximal left ideal of
$\operatorname{End}(V)$ of codimension $\quad n^{2}-n$. Observe that $T^{*}(L) \subseteq L$. Set $M=L^{\perp}$. Then M is a minimal left coideal of C by Lemma 1.4 and $T(M) \subseteq M$ by Lemma 1.6. and Using Remark1.7 we see that $\operatorname{Dim}(M)=n$.

Since T is diagonalizable and $T(M) \subseteq M$ it follows that the restriction $T \mid M$ is diagonalizable. Let $\left\{m_{1}, m_{2}, \cdots, m_{n}\right\}$ be a basis of eigenvectors for $T \mid M$ and let $\lambda_{1}, \cdots, \lambda_{n} \in K$
satisfy $T\left(m_{i}\right)=\lambda_{i} m_{i}$ for all $1 \leq i \leq n$. Then $\lambda_{1}, \cdots, \lambda_{n}$ are non-zer scalars since $T \mid M$ is noe-
one. For each $1 \leq i \leq n$ write $\Delta\left(m_{i}\right)=\sum_{j=1}^{n} c_{i, j} \otimes m_{j}$. Then the $c_{i, j}$'s satisfy the comatrix identities and thus span a non-zero subcoalgebra D of C. Since C is simple $D=C$. Since
$\operatorname{Dim}(C)=n^{2}$ necessarily the $c_{i, j}$'s from a basis for C. Applying $T \otimes T$ to both sides of the

$$
\begin{aligned}
& \stackrel{\text { equation }}{\sum_{j=1}^{n} \lambda_{i} c_{i, j} \otimes m_{j}=\sum_{j=1}^{n} T\left(c_{i, j}\right) \otimes \lambda_{j} m_{j} .} \begin{array}{r}
\Delta\left(m_{i}\right) \text { yields } \\
T\left(c_{i, j}\right)= \\
\quad \lambda_{i} \lambda_{j}^{-1} c_{i, j} \text { for all } 1 \leq i, j \leq n \text {. Since }\left\{c_{i, j}\right\}_{1 \leq i, j \leq n} \text { is a basis } \\
\text { for } C \text { we calculat }
\end{array}
\end{aligned}
$$

$$
\boldsymbol{F}(T)=\sum_{i, j=1}^{n} \lambda_{i} \lambda_{j}^{-1}=\left(\sum_{i=1}^{n} \lambda_{i} \chi \sum_{i=1}^{n} \lambda_{i}^{-1}\right)
$$

Theorem 3.2 Let H be a Hopf algebra with antipode S over K. Then the following are equivalent.
H is cosemisimple.
$\boldsymbol{T}\left(S^{2}\right) \neq 0$.
H is semisimple.
$S^{2}=1_{H}$.
$\omega: H \rightarrow K$ defined by $\omega(a)=\mathbb{T}(r(a)$ for all $a \in H$ is a right integral for H.

Proof $(1) \Rightarrow(2)$. Since H is cosemisimple it is the direct sum of its simple subcoalgebras . Let C be a simple subcoalgebra of H. Then $S(C)=C$ By Theorem1.13. Now S^{2} has finite order by part (1) of Theorem Proposition1.11.

Since K is algebraically closed of
characteristic zero S^{2} is diagonalizable. Thus $\boldsymbol{T}\left(S^{2}\right)=\left(\sum_{i=1}^{n} \lambda_{i} \chi \sum_{i=1}^{n} \lambda_{i}^{-1}\right)$ where $\lambda_{1}, \cdots, \lambda_{n}$ are roots of unity by Lemma 3.1. Since the characteristic of K is zero we may assume that $\lambda_{1}, \cdots, \lambda_{n} \in \mathrm{C}$, the field of compex mubers. Thus
$\boldsymbol{F}\left(S^{2} \mid C\right)=\left(\sum_{i=1}^{n} \lambda_{i} \gamma \sum_{i=1}^{n} \lambda_{i}^{-1}\right)=\left(\sum_{i=1}^{n} \lambda_{i} \gamma \overline{\sum_{i=1}^{n} \lambda_{i}}\right)=\left|\sum_{i=1}^{n} \lambda_{i}\right|^{2}$
is a non-negative real number. Therefore $\boldsymbol{F}\left(S^{2}\right)=1+\sum_{C} \boldsymbol{T}\left(S^{2} \mid C\right) \geq 1$, where C runs over the simple subcoalgebras $C \neq K 1$ of H. We have shown that $\mathbb{F}\left(S^{2}\right) \neq 0$.
(2) \Rightarrow (3). It is pretty obvious by Proposition1.10.
$(3) \Rightarrow(4)$. Assume that H is semisimple. Then H^{*} is cosemisimple. We have just show H^{*}
is semisimple; thus H is semisimple and cosemisimple. In particular $\boldsymbol{T}\left(S^{2}\right) \neq 0$. Now $\boldsymbol{T}\left(S^{2}\right)$ $=\left(\operatorname{Dim}(H) \mathbb{T}\left(\left.S^{2}\right|_{x_{H}} H\right)\right.$ by part (3) of Proposition 1.11 and $S^{4}=1_{H}$ by part (2) of Porposition1.11. Since the characteristic of K is not 2 , the last equation implies S^{2} is a diagonalizable endomorphism of H with eigenvalues ± 1. Choose a basis of eigenvectors for S^{2}. Let n_{+}be the number of basis vectors belonging to the eigenvalue 1 and let n_{-}be the number belonging to -1 . By the preceding trace formula $n_{+}-n_{-}=\left(n_{+}+n_{-}\right) m$ for some integer m which is not zero since $\boldsymbol{T}\left(S^{2}\right) \neq 0$. Squaring both sides of this equation yields

$$
-2 n_{+} n_{-}=\left(m^{2}-1\right) n_{+}^{2}+2 m^{2} n_{+} n_{-}+\left(m^{2}-1\right) n_{-}^{2} \geq 0
$$

Therefore $n_{+} n_{-}=0$. Since $n_{+} \neq 0$ necessarily $n_{-}=0$. We have shown $\stackrel{+}{S}^{2}=1_{H}$.
$(4) \Rightarrow(5)$. That it is very simple follows by part (2) of Proposition1.9.
$(5) \Rightarrow(1)$. Since $\omega(1)=\operatorname{Dim}(H) 1 \neq 0$, thus our proof is complete by Theorem1.12.

References:

[1] Sweedle M E. Hopf Algebra[M].New York Benamin;1969.
[2] Etingof, P. and Gelaki, S. On finite-dimensional semisimple and cosemisimple Hopf algebras in positive characteristic[J], Internat. Math. Res. Notices 1988.
[3] Radford D.E., The Structure of Hopf Algebras with a Projection[J], J.Algebra, 1985.
[4] Abe,E.Hopf Algebra[M].Cambridge Tracts in Mathematics 74,Cambridge University Press, Cambridge-New York;1980.
[5] Montgomery S., Hopf Algebras and Their Actions on Rings[M] , CBMS Reginal Conference Series in Math, 82,Amer.Math. Soc.,Porvidence, 1993.
[6] Radford D.E., On the antipode of a cosemisimple Hopf algebra[J], J. Algebra, 1985.

About the Author: Yuqiu Wei (1981-),female, associate professor, master tutor, research direction: mathematics teaching theory.
Corresponding author: Beishang Ren (1956-), male, Professor, master tutor, research direction: ring and module theory and Hopf algebra.

