

DOI: 10.18686/ahe.v6i15.5134

Finite-Dimensional Hopf Algebras

Yuqiu Wei¹, Beishang Ren^{2Corresponding Author}

1. Guangxi University of Foreign Languages, Nanning 530222, Guangxi China

2. Software Engineering Institute of Guangzhou, Guangzhou 510990, Guangdong China

Abstract: This paper mainly discussed various characterizations for the finite-dimensional Hopf algebras over algebraically closed field and has characteristic 0. And further showed that the order of antipode of the Hopf algebras is finite, but also provides a hint on how to estimate the order of the antipodes.

Keywords: Finite-dimensional Hopf algebras; Order of the antipode ; Trace; Semisimple; Cosemisimple; Eigenvalue; Distinguished grouplike

Fund project: Project supported by Research Program of Software Engineering Institute of Guangzhou (KY202110).

1. Introduction

Throughout this paper K is a algebraically closed field and has characteristic0, H is a finite -dimensional K - Hopfalgebra with antipode S which is a diagonalizable operator and C is a K -

coalgebra . There is a convenient adaptation of the Heyneman–Sweedler^[1] singma notation for coalgebras and comodules as $\Delta(c) = \sum c_{(1)} \otimes c_{(2)}$ and $\rho(c) = \sum c_{(-1)} \otimes c_{(0)} \quad \forall c \in C$.

Definition 1.1^[1] A grouplike elements of *C* is a $c \in C$ which satisfies the following conditions: $\Delta(c) = c \otimes c$ and $\varepsilon(c) = 1$, the set of grouplike elements of *C* is denoted G(C).

We firstly recall the following actions as module structures: H^* is a left H - module via $(h \rightarrow h^*)(g) = h^*(g)$ for $h, g \in H, h^* \in H^*$.

 H^* is a rigt H-module via $(h \leftarrow h^*)(g) = h^*(g)$ for $h, g \in H, h^* \in H^*$.

H is a left $h H^*$ – module via $h^* \rightarrow h = \sum h^*(h_2)h_1$ for $h^* \in H^*, h \in H$.

H is a right H^* – module via $h \leftarrow h^* = \sum h^*(h_1)h_2$ for $h^* \in H^*, h \in H$.

If $g \in H$ is a grouplike element as in Definition 1.1, we can denote by

$$L_{g} = \{m \in H^{*} | h^{*}m = h^{*}(g)m \text{ for any } h^{*} \in H^{*} \}$$

and
$$R_{g} = \{n \in H^{*} | h^{*} = h^{*}(g)n \text{ for any } h^{*} \in H^{*} \}$$

which are ideals of H^* and $L_1 = \int_I R_1 = \int_R$. Also recall from^[1] that L_g and R_g are 1-dimensional, and there exists a grouplike element d such that $R_d = L_1$, where d is called the distinguished grouplike. We can perform the same constructions on the dual algebra H^* . More precisely, for any $\eta \in G(H^*) = A \lg(H, K)$ we can define

$$L_{\eta} = \{ x \in H | \mathbf{k} = \eta(h) x \text{ for any } h \in H \}$$
$$R_{\eta} = \{ y \in H | \mathbf{j}_{\theta} = \eta(h) y \text{ for any } h \in H \}.$$

We remark that if we keep the same definition we gave for L_g , then L_η should be a subspace

of H^{**} . The set L_{η} , as defined above , is just the preimage of this subspace via the canonical

Isomorphism $\theta: H \to H^{**}$. From the above it follows that the subspaces L_n and R_n are ideals

of dimension 1 in H, and there exists $\alpha \in G(H^*)$ such that $R_{\alpha} = L_{\varepsilon}$. This element α is the

distinguished grouplike element in H^* .

Remark $1.2^{[1]}$ If H is semisimple and cosemisimple, then distinguished grouplike in H and

 H^* are equal to 1 and \mathcal{E} , respectively.

Lemma 1.3^[2] Suppose that H is a Hopf algebra over K. Then

The only subspaces of H which are both a left ideal and left coideal of H are $\{O\}$ and

$$H_{\cdot}$$

If H contains a non-zero finite -dimensional left or right ideal. Then H is finite-dimensional.

Lemma 1.4^[3] Let C be a finite-dimensional coalgebra over K. Then $U \mapsto U^{\perp}$ is a one-one inclusion reversing correspondence between the set of coideals (respectively subcoalgebras, left coideals, right coideals) of C and the set of subalgebras (respectively ideals, left ideals, right ideals) of the dual algebra C^* .

Lemma 1.5^[3] If $C_n(K)$ is a simple coalgebra over K for all $n \ge 1$. Then any simple coalgebra over K is isomorphic to $C_n(K)$ for some $n \ge 1$.

Lemma1.6^[4] Suppose U and V be vector spaces over K and $F: V^* \to U^*$ is the transpose of a linear map $f: U \to V$. If J and I are subspaces of V^* and U^* respectively. Then

$$F(J) \subseteq I$$
 implies $f(I^{\perp}) \subseteq J^{\perp}$.

Remark 1.7^[4] For a subspace V of U let $res_V^U : U^* \to V^*$ be the restriction map which is thus defined by $res_V^U(u^*) = u^* | V$ for all $u^* \in U^*$. Notice that $Ker(res_V^U) = V^{\perp}$. Hence

 $U^*/V^{\perp} \cong V^*$ as vector spaces. Therefore we have the formula $Dim(U^*/V^{\perp}) = Dim(V^*)$ In particular V^{\perp} is a cofinite subspace of U^* if and only if V is a finite-dimensional subspace of

U. Also notice that $res_V^U = i^*$, where $i: V \to U$ is the inclusion map.

Definition 1.8^[4] For $a \in H$, $a^* \in H^*$, $b \in H$, define endomorphisms $L(a^*)$ and $R(a^*)$ in End(H) by $L(a^*(b) = a^* \rightarrow b$ and $R(a^*(b) = b \leftarrow a^*$, on the other hand, l(a) and r(a) in End(H) by l(a(b) = band r(a(b) = b).

Proposition 1.9^[5] Suppose that S is the antipode of H. Let Λ be a left integral for H and ω be a right integral for H^* which satisfy $< \Lambda, \omega \ge 1$. Then

 $\mathbf{F} (r(a) \circ S^2 \circ R(a^*) \preccurlyeq \omega, a \preccurlyeq a^*, \Lambda > \text{ for all } a \in H, a^* \in H^*.$

The functional $\omega_r \in H^*$ defined by $\omega_r(a) = \mathcal{F}(r(a) \circ S^2)$ for all $a \in H$ is a right integral for H^* .

Proposition 1.10^[5] Suppose that S is the antipode of H. Then the following are equivalent:

H and H^* are semisimple.

 $\mathbb{I}(S^2) \neq 0.$

Proposition 1.11^[5] Suppose that S is the antipode of H.

Let g and α be the distinguished grouplike elements for H and H^* respectively. Then $S^4 = \tau_g \circ (\tau_{\alpha^{-1}})^*$

or equivalently, $S^4(a) = g(\alpha \to a \leftarrow \alpha^{-1})g^{-1}$, for all $a \in H$.

If H and H^* are unimodular, in particular if H and H^*

are semisimple, then $S^4 = 1_H$.

$$\mathbf{F}(S^2) = (Dim(H) \mathbf{F}(S^2 \big|_{x_H} H)).$$

Theorem 1.12^[6] Let H be a Hopf algebra over K. Then the following are equivalent:

All left H – comodules are completely reducible. $< \lambda, 1 \neq 0$ for some $\lambda \in \int^{r}$. $H = K1 \otimes C$ for some subcoalgebra C of H. $< \lambda, 1 \neq 0$ for some $\lambda \in \int^{l}$ All right H – comodules are completely reducible.

Theorem 1.13^[6] Let H be a cosemisimple Hopf algebra with antipode S. Then $S^2(C) = C$ for all simple subcoalgebras Cof H.

2. The order of the antipode

Lemma 2.1 Suppose $\eta \in G(H^*)$ $g \in G(H)$ $m, n \in H^*$ and $x \in L_\eta$ such that $m \to x = x \leftarrow n$. Then $m \in L_g$ and $n \in R_g$.

Proof Let
$$h^*, g^* \in H^*$$
. Then
 $(g^*h^*m)(x) = \sum (g^*h^*)(x_1m(x_2))$
 $= (g^*h^*)(g)$
 $= g^*(g)h^*(g)$
 $= \sum g^*(m(x_2)x_1)h^*(g)$
 $= (g^*h^*(g)m)(x)$

which shows that $(g^*(h^*m - h^*(g)m))(x) = 0$, so $(h^*m - h^*(g)m)(x) = 0$. But

$$x \leftarrow H^* = H$$
, since $L_\eta \leftarrow \eta = L_\varepsilon$ and $L_\varepsilon \leftarrow H^* = H$ (applied for the dual of H^{φ}). This

shows that $h^*m = h^*(g)m$, and so $m \in L_{\sigma}$. The fact

shows that n = n (g)m, and so $m \in L_g$. The fact that $n \in R_g$ is proved in a similar way.

Corollary 2.2 If $m \in H^*$, $x \in L_{\varepsilon}$, and $m \to x = 1$, then $m \in L_1$ and $x \leftarrow m = d$.

Proof If
$$h^* \in H^*$$
, then
 $h^*(x \leftarrow m) = \sum h^*(x_2)m(x_1)$
 $= (h_1^*)(x)$
 $= h(d)m(x)$
 $h^*(m(x)d)$

Applying ε to the relation $\sum m(x_2)x_1 = 1$ we get m(x) = 1. This shows that $x \leftarrow m = d$. The fact that $m \in L_1$ is proved by Lemma 2.1.

Lemma 2.3 Suppose $x \in L_{\eta}$, $g \in G(H)$ $m \in H^*$ such that $m \to x = g$. Then for any

$$h^{*} \in H^{*} \text{ we have } \eta(g)h^{*}(1) = \sum h^{*}(x_{1})m(g_{2}).$$
Proof From the fact that $\Delta(h^{*}) = \sum h_{1}^{*} \otimes h_{2}^{*},$
 $g = m \rightarrow x \text{ and } \eta(g)x = g$, we have
 $\eta(g)h^{*}(1) = \sum \eta(g)h_{1}^{*}(g^{-1})h_{2}^{*}(g)$
 $= h_{1}^{*}(g^{-1})h_{2}^{*}(m(x_{2})x_{1}\eta(g))$
 $= h_{1}^{*}(g^{-1})h_{2}^{*}(m(g_{2})g_{1})$
 $= \sum h^{*}(g^{-1}g_{-1})m(g_{-2})$
Lemma 2.4 Let $x \in L_{\eta}, g \in G(H)$ $m \in H^{*},$ and
 $\eta \in G(H^{*})$ such that $m \rightarrow x = g$. Then
for any $h \in H$ we have
 $S(g^{-1}(\eta \rightarrow h) = (m \leftarrow h) \rightarrow x.$
Proof If $h^{*} \in H^{*}$. Then
 $h^{*}(S(g^{-1}(\eta \rightarrow h))) = \sum h^{*}(S(h_{1})g)\eta(h_{2}))$
 $= \sum \eta(g)h^{*}(S(h_{1})g)\eta(g^{-1}h_{2})$
 $= \eta(g)((h^{*}S)\eta)(g^{-1}h)$
 $= \sum (h_{1}^{*}S)\eta(g^{-1}h)h_{2}^{*}(m(g_{-2})x_{1}))$
 $= \sum (h_{1}^{*}S)(g^{-1}h_{1})\eta(g^{-1}h_{2})h_{2}^{*}(m(g_{-2})x_{1}))$
 $= \sum h_{1}^{*}(S(h_{1})g)h_{2}^{*}(m(g^{-1}h_{3}x_{2})g^{-1}h_{2}x_{1}))$
 $= \sum h_{1}^{*}(S(h_{1})g^{-1}h_{2}x_{1}m(h_{3}x_{2}))$
 $= \sum h_{1}^{*}(S(h_{1})g^{-1}h_{2}x_{1}m(h_{3}x_{2}))$
 $= \sum h^{*}(m \leftarrow h) \rightarrow x).$

Remark 2.5 If we write the formula from Lemma2.4 for the Hopf algebras H, H^{cop}, H^{ρ} , cop and H^{φ} , we get that for any $h \in H$ the following relations hold:

Suppose $x \in L_{\eta}, m \to x = g$, then $S(g^{-1}(\eta \to h) = (m \leftarrow h) \to x;$

Suppose $x \in R_{\eta}, m \to x = g$, then $S^{-1}(\eta \to h)g^{-1} = (h \to m) \to x;$

Suppose
$$x \in R_{\eta}, x \leftarrow n = g$$
, then
 $S(h \leftarrow \eta)g^{-1}) = x \leftarrow (h \rightarrow n)$

Suppose
$$x \in L_{\eta}, x \leftarrow n = g$$
, then
 $S^{-1}(g^{-1}(h \leftarrow \eta) = x \leftarrow (n \leftarrow h)$

In particular

If $x \in L_{\varepsilon}, m \to x = 1$, then $S(h) = (m \leftarrow h) \to x$ (2.1)

If $x \in R_{\alpha} = L_{\varepsilon}, m \to x = 1$, then $S^{-1}(\alpha \to h) = (h \to m) \to x$ (2.2)

If
$$x \in R_{\alpha} = L_{\varepsilon}, x \leftarrow n = d$$
, then
 $S(h \leftarrow \alpha)d^{-1} = x \leftarrow (h \rightarrow n)$ (2.3)

If
$$x \in L_{\varepsilon}, x \leftarrow n = g$$
, then
 $S^{-1}(g^{-1}h) = x \leftarrow (n \leftarrow h)$ (2.4)
Theorem 2.6 For any $h \in H$ we have

 $S^4(h) = d^{-1}(\alpha \rightarrow h \leftarrow \alpha^{-1})d$.

Proof Suppose $x \in L_{\varepsilon} = R_{\alpha}$, and $m \in H^*$ with $m \to x = 1$. Corollary 2.2 shows that $m \in L_1$ and $m \in L_1$ and $x \leftarrow m = d$. Moreover, we have

$$(S^4(h) \to m) \to x = S^{-1}(\alpha \to S^4(h))$$

(by

$$= S^{-1}(S^{4}(\alpha \to h))$$

= $S(S^{2}(\alpha \to h))$
= $(m \leftarrow S^{2}(\alpha \to h)) \to x$

(2.1))

(by (2.2))

Since the map from H^* to H, sending $h^* \in H^*$ to $h^* \to x \in H$ is bijective, we obtain

$$S^4(h) \rightarrow m = m \leftarrow S^2(\alpha \rightarrow h)$$
.
On the other hand,

$$x \leftarrow (m \leftarrow S^2(\alpha \to h)) = S^{-1}(d^{-1}S^2(\alpha \to h))$$

(by (2.4))

$$= S^{-1}(S^{2}(d^{-1}(\alpha \to h)))$$

= $S(d^{-1}(\alpha \to h)$
= $S(d^{-1}(\alpha \to h)d^{-1})$
= $S(((d^{-1}(\alpha \to h \leftarrow \alpha^{-1})d) \leftarrow \alpha)d^{-1})$
= $x \leftarrow (d^{-1}(\alpha \to h \leftarrow \alpha^{-1})d) \to m)$

(by (2.3))

Since the map $h^* \mapsto (x \leftarrow h^*)$ from H^* to H is bijective, we obtain that

 $m \leftarrow S^2(\alpha \rightarrow h) = (d^{-1}(\alpha \rightarrow h \leftarrow \alpha^{-1})d) \rightarrow m$ We got that

 $S^4(h) \to m = (d^{-1}(\alpha \to h \leftarrow \alpha^{-1})d) \to m$ then the formula follows from the bijectivity of the map $h \mapsto (h \to m)$ from H to H^* .

Theorem 2.7 Let H be a finite dimensional Hopf algebra. Then the antipode S has finite order.

$$S^{4n}(h) = d^{-n}(\alpha^n \to h \leftarrow \alpha^{-n})d^n$$

for any positive integer *n*. Since G(H) and $G(H^*)$ are finite groups, their elements have finite orders, so there exists *p* for which $d^p = 1$ and $\alpha^p = \varepsilon$. Then it follows that $S^{4p} = I$. **3 Characterizations of semisimple Hopf**

3 Characterizations of semisimple Hopi algebras

Semisimlpe Hopf algebras are finite-dimensional by part (2) of Lemma 1.3. We characterize finite-dimensional Hopf algebras which are semisimple in the algebraically closed characteristic zero case. To this end we calculate a trace.

Lemma 3.1 If C is a simple coalgebra over K, and T is a diagonalizable coalgebra automorphism of C. The

$$\boldsymbol{F}(T) = \left(\sum_{i=1}^{n} \lambda_{i}\right) \sum_{i=1}^{n} \lambda_{i}^{-1} \right)$$

where $\lambda_{1}, \lambda_{2}, \dots, \lambda_{n}$ are eigenvalues for T .

Proof By lemma 1.5 we obtain that $C \cong C_n(K)$ for some $n \ge 1$. Thus we may assume

- 32 - Advances in Higher Education

 $C = C_n(K)$. The crux of the proof will be to show that there is a simple left coideal M of C

such that $T(M) \subseteq M$. Necesarily Dim(M) = n.

 T^* is an algebra automorphism of $C^* = M_n(K)$ By Skolem-Noether Theorem, there is an invertible matrix $u \in M_n(K)$ such that $T^*(a) = uau^{-1}$ for all $a \in M_n(K)$ Identify $C^* = M_n(K)$ with End(V), where V is an ndimensional vector space over K. Since K is algebraically closed, u has an eigenvalue $\lambda \in K$. Let $v \in V$ be a non-zero vector satisfying $u(V) = \lambda v$. Regard End(V) and V as left End(V)-modules via function composition and evaluation respectively. Then V is a simple module and the evaluation map $e_v : End(V) \to V$ given by $e_v(a) = a(v)$ for all

 $e_v: Ena(V) \to V$ given by $e_v(a) = a(V)$ for all $a \in End(V)$

is a module map. Therefore $L = Ker(e_v) = \{a \in End(V) | a(v) = 0\}$ is a maximal left ideal of

End(V) of codimension $n^2 - n$. Observe that $T^*(L) \subseteq L$. Set $M = L^{\perp}$. Then M is a minimal left coideal of C by Lemma 1.4 and $T(M) \subseteq M$ by Lemma 1.6. and Using Remark 1.7 we see that Dim(M) = n.

Since *T* is diagonalizable and $T(M) \subseteq M$ it follows that the restriction T|M is diagonalizable. Let $\{m_1, m_2, \dots, m_n\}$ be a basis of eigenvectors for T|M and let $\lambda_1, \dots, \lambda_n \in K$

satisfy $T(m_i) = \lambda_i m_i$ for all $1 \le i \le n$. Then $\lambda_1, \dots, \lambda_n$ are non-zer scalars since T|M is noe-

one. For each $1 \le i \le n'$ write $\Delta(m_i) = \sum_{j=1}^n c_{i,j} \otimes m_j$. Then the $c_{i,j}$'s satisfy the comatrix identities and thus span a non-zero subcoalgebra D of C. Since C is simple D = C. Since

 $Dim(C) = n^2$ necessarily the $c_{i,j}$'s from a basis for C. Applying $T \otimes T$ to both sides of the

equation for $\Delta(m_i)$ yields $\sum_{j=1}^{n} \lambda_i c_{i,j} \otimes m_j = \sum_{j=1}^{n} T(c_{i,j}) \otimes \lambda_j m_j.$ Therefore

 $\lambda_i \lambda_j^{-1} c_{i,j}$ for all $1 \le i, j \le n$. Since $\{c_{i,j}\}_{1 \le i, j \le n}$ is a basis for *C* we calculat

$$\boldsymbol{T}(T) = \sum_{i,j=1}^{n} \lambda_i \lambda_j^{-1} = \left(\sum_{i=1}^{n} \lambda_i\right) \sum_{i=1}^{n} \lambda_i^{-1}$$

Theorem 3.2 Let H be a Hopf algebra with antipode S over K. Then the following are equivalent.

H is cosemisimple.

 $\mathbf{I} (S^2) \neq 0.$

H is semisimple.

$$S^2 = 1_{u}$$

 $\omega: H \to K$ defined by $\omega(a) = \mathbb{I}(r(a))$ for all $a \in H$ is a right integral for H.

Proof (1) \Rightarrow (2). Since *H* is cosemisimple it is the direct sum of its simple subcoalgebras. Let *C* be a simple subcoalgebra of *H*. Then *S*(*C*) = *C* By Theorem1.13. Now S^2 has finite order by part (1) of Theorem Proposition1.11.

Since K is algebraically closed of

characteristic zero S^2 is diagonalizable. Thus $F(S^2) = (\sum_{i=1}^n \lambda_i) \sum_{i=1}^n \lambda_i^{-1}$ where $\lambda_1, \dots, \lambda_n$ are roots of unity by Lemma 3.1. Since the characteristic of K is zero we may assume that $\lambda_1, \dots, \lambda_n \in \mathbb{C}$, the field of compex mubers. Thus

$$\boldsymbol{F}\left(S^{2}|C\right) = \left(\sum_{i=1}^{n} \lambda_{i}\right)\left(\sum_{i=1}^{n} \lambda_{i}^{-1}\right) = \left(\sum_{i=1}^{n} \lambda_{i}\right)\left(\overline{\sum_{i=1}^{n} \lambda_{i}}\right) = \left|\sum_{i=1}^{n} \lambda_{i}\right|^{2}$$

is a non-negative real number. Therefore $\mathbf{F}(S^2) = 1 + \sum_C \mathbf{F}(S^2|C) \ge 1$, where *C* runs over the simple subcoalgebras $C \ne K1$ of *H*. We have shown that $\mathbf{F}(S^2) \ne 0$.

 $(2) \Longrightarrow (3)$. It is pretty obvious by Proposition 1.10.

(3) \Rightarrow (4). Assume that H is semisimple. Then H^* is cosemisimple. We have just show H^*

is semisimple; thus H is semisimple and cosemisimple. In particular $\mathbb{T}(S^2) \neq 0$. Now $\mathbb{T}(S^2)$ $= (Dim(H) \mathbb{T}(S^2|_{x_H}H)$ by part (3) of Proposition 1.11 and $S^4 = 1_H$ by part (2) of Porposition1.11. Since the characteristic of K is not 2, the last equation implies S^2 is a diagonalizable endomorphism of H with eigenvalues ± 1 . Choose a basis of eigenvectors for S^2 . Let n_+ be the number of basis vectors belonging to the eigenvalue 1 and let n_- be the number belonging to -1. By the preceding trace formula $n_+ - n_- = (n_+ + n_-)m$ for some integer m which is not zero since $\mathbb{T}(S^2) \neq 0$. Squaring both sides of this equation yields

$$-2n_{+}n_{-} = (m^{2} - 1)n_{+}^{2} + 2m^{2}n_{+}n_{-} + (m^{2} - 1)n_{-}^{2} \ge 0.$$

Therefore $n_+n_- = 0$. Since $n_+ \neq 0$ necessarily $n_- = 0$. We have shown $S^2 = 1_{H_1}$

 $(4) \Longrightarrow (5)$. That it is very simple follows by part (2) of Proposition 1.9.

 $(5) \Rightarrow (1)$. Since $\omega(1) = Dim(H) 1 \neq 0$, thus our proof is complete by Theorem 1.12.

References:

[1] Sweedle M E. Hopf Algebra[M].New York Benamin;1969.

- [2] Etingof, P. and Gelaki, S. On finite-dimensional semisimple and cosemisimple Hopf algebras in positive characteristic[J], Internat. Math. Res. Notices 1988.
- [3] Radford D.E., The Structure of Hopf Algebras with a Projection[J], J.Algebra, 1985.
- [4] Abe,E.Hopf Algebra[M].Cambridge Tracts in Mathematics 74,Cambridge University Press, Cambridge-New York;1980.
- [5] Montgomery S., Hopf Algebras and Their Actions on Rings[M]
 , CBMS Reginal Conference Series in Math, 82, Amer. Math. Soc., Porvidence, 1993.
- [6] Radford D.E., On the antipode of a cosemisimple Hopf algebra[J], J. Algebra,1985.

About the Author: Yuqiu Wei (1981-), female, associate professor, master tutor, research direction: mathematics teaching theory.

Corresponding author: Beishang Ren (1956-), male, Professor, master tutor, research direction: ring and module theory and Hopf algebra.