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Abstract: Deep learning has been successfully applied to single im- age super-resolution problems due to its high data fitting abil-
ity. However, the increasing depth and complexity of the network has brought about the disappearance of information, data volume
and computational redundancy, and is not suit- able for small devices. To solve these problems, we propose a new lightweight
network model based on interleaved group convolution for single image super-resolution reconstruction. The core idea of this
algorithm is to broaden the network structure by means of group convolution, enhance the sparsity of the convolution kernel, and
achieve the purpose of reduc- ing the amount of calculation and the amount of parameters. After a lot of experimental evaluation,
we prove that our al- gorithm can achieve better results with a smaller number of parameters.
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1. Introduction

Single image Super-Resolution(SISR) reconstruction algo- rithm has gained increasing research attention for decades. SISR is
broadly divided into three research directions: in- terpolation based!", reconstruction based®, and learning based methods. At present,
the learning-based method has become an important research direction of SISR, and the interpolation-based and reconstruction-
based methods are usually used as auxiliary processing processes based on learn- ing methods. Among them, the super-resolution
reconstruc- tion algorithm SRCNN proposed by Dong et al®! is based on convolutional neural network for feature extraction, and then
achieves super-resolution reconstruction by changing convo- lution kernel and network layer, which has achieved very good results.
Based on this, more algorithms try to strengthen the effect of super-resolution algorithm by deepening the neu- ral network. However,
this structure has several shortcom- ings: 1) It does not consider the network degradation problem that may occur with the deepening
of the network; 2) The data redundancy problem that is inevitable due to the deepening of the structure has not been solved. In order to
solve the above problems, we propose a neural network based on interleaved group convolution for image super-resolution.

2. Related works

In order to reduce or even eliminate the redundancy of data, we usually adopt the method of simplifying the network struc- ture
or eliminating redundancy in the convolution. This pa- per only discusses the method of eliminating redundancy in the convolution.
In order to reduce the amount of data and calculation in this process, it is generally processed for the convolution kernel. Common
processing methods areconvert convolution kernels into: 1) low-precision kernels, the most common way is to binarize the convolution
kernel. 2) low- rank kernels, the size of the convolution kernel will be re- duced from large to small, FSRCNNM is to use this method
to reduce the training scale. 3) sparse kernels, that is, increas- ing the number of zeros in the kernels as much as possible to reduce the
amount of calculation. 4) the free combination of the above methods.

Based on the above, Dr. Wang proposed a new structure named Interleaved Group Convolutions®.. It is a convolu- tional neural
network convoluted in units of convolutions. The convolutional layer is divided into multiple groups by channel to convolve separately

to reduce the amount of pa- rameter data. For the problem that the correlation between different groups may be insufficient for group
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convolution, the member exchange between groups is used to solve the problem. This structure reduces the parameters without caus-
ing performance degradation. Therefore, we adopt the same mechanism in different ways.

3. Proposed methods

In this section we will describe the proposed model architec- ture. Earlier we mentioned that the residual network and the
interleaved group convolution (IGC) can solve the network degradation and data redundancy problem. Therefore, we try To replace
the ordinary convolution kernel with the IGC block based on the VDSR structure to optimize the network struc- ture.
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Fig. 1. The overall structure of the model is structure2 when n = 3, structure3 when n = 6, and structurel when n = 18 and the whole structure has only two regular

convolutional layers.

3.1 Network Structure

The overall structure of the proposed algorithm is shown in Figure 1. The model can be easily divided into three parts: feature
extraction, nonlinear mapping and reconstruction.

Feature extraction: This part includes a convolution layer to map image channels to various feature maps. Considering that the
network structure is widened, the correlation between the convolution layers may be weakened, we expand the con- volution kernel
size in the feature extraction step from the usual 3 x3 x 64 to 3 x 3 x 96.

Nonlinear mapping: The nonlinear mapping consists of regular convolutional layers and an IGC blocks to squeeze the amount of
parameters, enhance the sparsity of the convolution kernel, and reduce the amount of computation.The structure of the IGC block will
be discussed in 3.2

Reconstruction: Entering the reconstruction part, the re- construction part consists of a convolutional layer with a con- volution
kernel size of 3 x 3 x 1. In order to ensure the integrity of the image edge information in the entire network, we use the 0 padding
method to keep the image size unchanged.

In order to find a structure with relatively optimal efficiency and results, we experimented with different numbers of con-
volutional layers and IGC layers. Based on the parameter quantity considerations, we conducted three sets of control experiments
with different structures. in which structurel re- places all convolution kernels except head and tail with IGC; structure2 is based
on structurel, inserting a common convo- lution layer after every 3 IGC layers(n = 3); Structure3 is based on structurel, inserting a
normal convolution layer af- ter every 6 IGC layers(n = 6). Ensure that the total depth of the above three models is 20 layers. Peak
Signal to Noise Ratio (PSNR) and structural similarity index (SSIM) of each model were tested and compared. The results are shown
in Table 1.

We have found through comparison experiments that com-pared with VDSR, the structure after adding the IGC layers, where

Table 1. The PSNR and SSIM values of different models on different test sets, where upscale =2, 3 , the training set is General 100 +91images+ BSD100, the test set
is Set5, Set14, and para is the total parameter amount of each structure

structurel structure2 structure3 VDSE

Set5-x2 37.63 37.59 37.61 37.53
0.9593 0.9593 0.9593 0.9587

Set5-x3 33.57 33.67 33.65 33.66
0.9211 0.9215 0.9215 0.9213

Set]d-x2 33.08 33.07 33.08 33.03
0.9133 0.9133 0.9131 0.9124

Set14-x3 20.68 20.76 20.78 20.77
0.8300 0.8310 0.8314 0.8314

para 578KB 1748KB 1163KB 2605KB
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upscale is set to 2, the effect is better on each com- mon testset, and the parameter amount is smaller. And under the same training
set, the evaluation indicators of structurel are relatively best, structure3 is the second, and structure? is the weakest. This shows that
expanding the network width can effectively improve the quality of super-resolution recon- structed images at low magnification.
However, when we per- formed high magnification amplification, we found that the results were different. From the results shown in
Table 1, we found that when the magnification is 3 times, the result of the structure adding regular convolution layers is better than
that of the structure using only the IGC blocks. After comprehen- sive consideration, we chose to use a convolution layer for every 6
blocks to enhance the correlation between the convo- lutional layers. After testing, we found that our algorithm can achieve similar or
slightly better results than VDSR, and the parameter is about half of the VDSR.

3.2 Broaden and Squeeze

Since the emergence of network structures such as DenseNet!®) and ResNet, we can find that it is particularly important to have
long and short branch structures in the neu- ral network. Although the flow of information can be made very good through skip
connection, simply deepening the net- work still does not work well, so we try to widen the network. As mentioned in articlel™, We
divide a convolutional layer into two groups of convolutions by simply dividing the input chan- nel: primary group convolution and
secondary group convo- lution, which are respectively on the primary and secondary partitions. Wherein the primary group convo-
lution performs the spatial convolution over each primary partition separately, and the secondary group convolution performs a 1 X
1 con- volution over each secondary partition, blending the chan- nels across partitions outputted by primary group convolu- tion.
The difference is that after each IGC block, we add a shuffie layer to scramble the convolution channel to avoid the problem of weak

correlation caused by duplicate grouping in- formation.Its structure is shown in Figure 2.
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Fig. 2. Illustrating the IGC block. The left part is the primary group convolution, and the input multidimensional matrix is divided into L groups by channel, each group

i

has M channels (L =2, M = 3 in the figure), and the right part is secondary group convolution.

Suppose we need to convolve an image with nl channels, and we want to extract n2 feature convolution layers (for ease of calcu-
lation, take n2 =nl =n =M X L here), the convolution kernel size is f, the total parameter amount paral =n x f x f X n is required.
Using the structure of the IGC proposed above, the required parameter quantity is para2 = (M Xf xfxM ) xL+ (L x1x1 xL)xM,

according to paral - para2 > 0 We can see that para2 is less than paral, that is, the use of IGC layer instead of ordi- nary
convolutional layer can achieve the purpose of reducing the amount of data. In this paper, L =24 and M = 4.

ADAMMI optimization method is adopted. The parameters 1 and B2 are set to 0.9 and 0.999, € = 1- 8e, and the initial learning
rate is 0.001, which decreases twice. The learning rate was reduced by 10 times at epoch = 30 and epoch = 45, respectively. According
to the training of the L1 training network proposed by Zhao et al.'!, the performance is improved compared with the L2 training
network. So this article uses L1 loss as a loss function instead of using the usual L2 loss or mean squared error (MSE). The formula

. 1 . . . .
for the L1 loss functionis L1 =— E ) 1| F_(&)—y;| where is the reconstracted HR image from the LR image , is the ground truth
n i= i

image, and 0 represents all parameters for training. This article sets the batch size to 16. The deep learning framework used in this

article is CAFFE.

4. Experiment and results

4.1 Datasets

We use DIV2K™ to generate training LR and HR patches. DIV2K is a new high quality (2K resolution) image dataset proposed
by the SR mission. It consists of 800 training im- ages, 100 verification images and 100 test images. During the test, the data sets
Set5l1% and Set14!' are typically used for SR benchmarks. The B100"? from the Berkeley split dataset consists of 100 natural
images and is used for testing too. In addition, the proposed method was evaluated using the Urban100 dataset!*!, which included 100
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challenging images. Experiments were performed using a scale factor of 2x, 3x, and 4x between LR and HR images.

4.2 Implementation Details

In order to fully train the data, each image is downsampled by bicubic interpolation and cropped into small nonoverlapping images
of size 36 x 36. Because the three-channel image is easier to fall into the local optimal solution when training, this paper transforms the
RGB image into the YCbCr color space, and only trains the Y channel, and uses the rectified linear units (ReLU)!!¥ as the activation

function. In this paper, the
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Fig. 3. SR results of “img016”(in Urban100) with scale fac- tor x 3, The picture (a) is a ground truth picture, the pic- ture from (b) to (g) are based on: HR, bicubic,
SRCNN, DDSR, VDSR and our algorithm, the parameter values are (PSNR/SSIM): 22.45/0.7992, 24.59/0.8817, 24.77/0.8847, 26.01/0.90, 26.56/0.9150

4.3 Results

In this paper, PSNR and SSIM are chosen as the evaluation criteria for the image super-resolution effect. The test re- sults are
shown in Table 2. Based on the quantitative eval- uation of the parameters in the table, our model is superior to other advanced
algorithms mentioned in the table. In Figure 4, we can visually compare our algorithm with other algo- rithms. Compared with
other algorithms, the algorithm can obtain more clear edge information, and is more sensory than the original image. Therefore, our

algorithm can ensure better super-resolution reconstruction while ensuring the weight of the model.

5. Conclusion

In this paper, we propose a lightweight network for super- resolution based on interleaved group convolution. The ex- perimental
results of the benchmark datasets show that our model achieves competitive performance compared to current state-of-the-art models
with less parameters and faster speed.

Table 2.  The average PSNR and SSIM comparison results of different algorithms on the test set (red is the best result, blue is the second)

Daaset | Sale | pelRiiiy PSNRISSIM PSNRISSIM psnRSSM | PSNRSSIM
2 33.66/0.9299 36.66/0.9542 37.23/0.9574 37.53/0.9587 37.73/0.959

Sets x3 30.39/0.8682 32.75/0.9090 33.23/0.9166 33.66/0.9213 33.78/0.9233
x4 28.42/0.8104 30.48 /0.8286 30.82/0.8718 31.35/0.8838 31.36/0.8839

x2 30.24/0.8688 32.42/0.9063 32.79/0.9102 33.03/0.9124 33.11/0.9137

Setld x3 27.55/0.7742 29.28/0.8209 29.55/0.8264 29.77/0.8314 29.80/0.8320
x4 26.00/0.7027 27.49/0.7503 27.69 /0.7569 28.01/0.7674 28.08/0.7767

2 29.56/0.8431 31.36/0.8879 31.81/0.8945 31.90/0.8960 31.95/0.8970

B100 x3 27.21/0.7385 28.41/0.7863 28.73/0.7943 28.82/0.7976 28.83/0.7991
x4 25.96/0.6675 26.90/0.7101 27.10/0.7183 27.29/0.7251 27.31/0.7264

x2 26.88/0.8403 26.50/0.8946 / 30.76 /0.9140 31.07/0.9173

Urban100 x3 24.26/0.7349 26.24/0.7989 / 27.14/0.8279 27.16/0.8284
x4 23.14/0.6577 24.53/0.7221 / 25.18/0.7524 25.19/0.7527
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In addition, we have demonstrated the effective combination of IGC blocks and regular convolutional layers, and success- fully
applied the idea of broadening the network structure to super-resolution, which provides a new research directions for our future
research. Based on its lightweight nature, our next research is to apply this structure to small devices such as mobile phones, but it still
needs to be explored.
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