Characterization of Heat Kernel Lower Bounds for Symmetric Jump Processes
Abstract
Keywords
Full Text:
PDFReferences
[1] Chen Z Q,Kumagai T,Heat kernel estimates for stable-like processes on d-sets.Stoch.Proc.Their Appl.,2003,108:27–62.
[2] Chen Z Q,Kumagai T,Heat kernel estimates for jump processes of mixed types on metric measure spaces.Probab.Theory Relat.Fields,2008,2008:277–317.
[3] Chen Z Q,Kumagai T,Wang J.Stability of heat kernel estimates for symmetric non-local Dirichlet forms.Mem.Amer.Math.Soc.,2021,no.271.
[4] Chen Z Q,Kumagai T,Wang J.Stability of parabolic Harnack inequalities for symmetric non-local Dirichlet forms.J.Eur.Math.Soc.,2021,22:3747–3803.
[5] Chen Z Q,Kumagai T,Wang J.Elliptic Harnack inequalities for symmetric non-local Dirichlet forms.J.Math.Pures Appl.,2019,9:1–42.
[6] Chen Z Q,Kumagai T,Wang J.Heat kernel estimates and parabolic Harnack inequalities for symmetric Dirichlet forms.Adv.Math.2020,374:no.107269.
[7] Felsinger M,Kassmann M.Local regularity for parabolic nonlocal operators.Communications in Partial Differential Equations,2013,38:1539–1573.
[8] Kassmann M,Mimica A.Intrinsic scaling properties for nonlocal operators.Journal of the European Mathematical Society,2017,19:983–1011.
[9] Thierry C.Off -diagonal heat kernel lower bounds without Poincaré.J.London Math.Soc.,2003,68:795–816.
DOI: http://dx.doi.org/10.18686/ahe.v7i26.10419
Refbacks
- There are currently no refbacks.