• Login
  • Register
  • Search

Light-triggered Release of Antimicrobial Peptides from PEGylated Prodrugs

Zhi Chen, Xunxiang Qiu, Yang Wan, Leyun Wang


By synthesizing a light-sensitive AMP-mPEG prodrug with controllable release, we aimed to enhance drug bio-stability and antimicrobial effi cacy. Incorporating light-shielding amino acids and employing a “click” reaction enabled mPEG conjugation to the AMP peptide chain. This study successfully designed and synthesized an AMP-mPEG prodrug, revealing restored antimicrobial activity post-irradiation. Findings provide insights into reversible PEGylation for antimicrobial peptides, serving as a reference for related research in international journals.


Antimicrobial peptide; PEGylation; Prodrug; Hemolysis

Full Text:


Included Database


[1] Zasloff M. Antimicrobial peptides of multicellular organisms[J]. nature, 2002, 415(6870): 389-395.

[2] Hancock R E W, Sahl H G. Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies[J]. Nature biotechnology, 2006, 24(12): 1551-1557.

[3] Wang G, Li X, Wang Z. APD3: the antimicrobial peptide database as a tool for research and education[J]. Nucleic acids research, 2016, 44(D1): D1087-D1093.

[4] Velema W A, Van Der Berg J P, Hansen M J, et al. Optical control of antibacterial activity[J]. Nature chemistry, 2013, 5(11): 924-928.

[5] Wegener M, Hansen M J, Driessen A J M, et al. Photocontrol of antibacterial activity: shifting from UV to red light activation[J]. Journal of the American Chemical Society, 2017, 139(49): 17979-17986.

[6] Velema W A, van der Berg J P, Szymanski W, et al. Orthogonal control of antibacterial activity with light[J]. ACS chemical biology, 2014, 9(9): 1969-1974.

[7] Veronese F M, Mero A. The impact of PEGylation on biological therapies[J]. BioDrugs, 2008, 22: 315-329..

[8] Nordström R, Nyström L, Ilyas H, et al. Microgels as carriers of antimicrobial peptides–effects of peptide PEGylation[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 565: 8-15.

[9] Nyström L, Strömstedt A A, Schmidtchen A, et al. Peptide-loaded microgels as antimicrobial and anti-inflammatory surface coatings[J]. Biomacromolecules, 2018, 19(8): 3456-3466.

[10] Singh S, Papareddy P, Morgelin M, et al. Effects of PEGylation on membrane and lipopolysaccharide interactions of host defense peptides[J]. Biomacromolecules, 2014, 15(4): 1337-1345.

[11] Babii, O.; Afonin, S.; Berditsch, M.; Reisser, S.; Mykhailiuk, P. K.; Kubyshkin, V. S.; Steinbrecher, T.; Ulrich, A. S.; Komarov, I. V. Controlling Biological Activity with Light: Diarylethene- Containing Cyclic Peptidomimetics. Angew. Chem.Int. Ed. 2014, 53 (13), 3392–3395; Angew. Chem. 2014, 53 (13), 3392–3395.

[12] Babii, O.; Afonin, S.; Garmanchuk, L. V.; Nikulina, V. V.; Nikolaienko, T. V.; Storozhuk, O. V.; Shelest, D. V.; Dasyukevich, O. I.; Ostapchenko, L. I.; Iurchenko, V.; Zozulya, S.; Ulrich, A. S.; Komarov, I. V. Direct Photocontrol of Peptidomimetics: An Alternative to Oxygen-Dependent Photodynamic Cancer Therapy. Angew. Chem.Int. Ed. 2016, 55 (18), 5493–5496; Angew. Chem. 2016, 55 (18), 5493–5496.

DOI: http://dx.doi.org/10.18686/ahe.v7i35.12566