

DOI:10.18686/ahe.v8i1.12837

An Exploration of the Relationship Between Executive Function in the Sleep and Behavioral Development of Children and Adolescents

Ning Ma

North China University of Science and Technology, Tangshan, Hebei, 063000

Abstract: This study deeply investigates the relationship between sleep habits, executive function, and mental health in children and adolescents, with a focus on the role of prefrontal cortex development in this network. The research demonstrates the significant impact of good sleep habits on cognitive development, mental health, and behavioral performance in children and adolescents. Quality sleep is directly related to memory consolidation and information processing. It also has a positive effect on higher cognitive functions such as decision-making, attention regulation, and problem-solving by shaping executive functions. Additionally, this study highlights the crucial role of sleep in promoting neuroplasticity in the prefrontal cortex from a neurobiological perspective. This is vital for the development of brain structure and function, laying a solid foundation for cognitive development and mental health in children and adolescents. These findings offer valuable insights into the field of educational practice. They emphasize the importance of cultivating and improving sleep habits to promote the holistic development of children and adolescents. Comprehensive intervention strategies should be used to strengthen executive functioning and promote mental health. This study enhances our understanding of this field and offers practical recommendations for enhancing sleep patterns, cognitive development, and mental well-being. Additionally, it provides a direction for future research and practice.

Keywords: Children and adolescents; Sleep; Behavioral development; Executive function; Mediation; Neuroplasticity

The mental health of children and adolescents is a global concern. As they are crucial to the world's development in various fields, their mental well-being is of utmost importance. Research on the mental health of children and adolescents is critical as it affects not only their physical health (Kiecolt-Glaser & Glaser, 2002) but also their family, social, and future work relationships, which are essential for societal stability.

1. Prefrontal lobe and prefrontal cortex

The prefrontal lobe is a vital component in the behavioral development and mental health of children and adolescents. It regulates executive functions such as decision-making, inhibitory control, emotion regulation, social interaction, and problem-solving skills (Corbetta & Shulman, 2002). The maturation and functional development of this brain region are critical in facilitating adaptive behavior, learning abilities, and social skills. The development of the prefrontal lobe is closely related to age, and during adolescence, it undergoes rapid development. This development is associated with an increase in behavioral and emotional regulation problems during this period (Firat, 2019; Henri-Bhargava, Stuss, & Freedman, 2018). Therefore, it is important to understand the role of the prefrontal lobe in development to prevent and intervene in mental health problems during childhood and adolescence (Del Piero, Saxbe, & Margolin, 2016). This understanding may also provide a theoretical basis for designing effective educational strategies and mental health interventions.

Sleep profoundly affects prefrontal cortex development and function. Adequate sleep promotes neuroplasticity, enabling the prefrontal cortex to adjust its structure and connections more flexibly in the face of new information and experiences. Sleep deprivation may interfere with the normal development of the prefrontal cortex, which can have adverse effects on cognition, mood, and behavior.

2. Critical role of neuroplasticity in prefrontal cortex development

Neuroplasticity is a crucial factor in prefrontal cortex development (Kong, Gibb, & Tate, 2016), which is responsible for higher cognitive functions such as decision-making and emotion regulation (Voss, Thomas, Cisneros-Franco, & de Villers-Sidani, 2017). Neuroplasticity enables the prefrontal cortex to adapt to changes in the environment and learning experiences, facilitating the optimization of connections between neurons and the formation of new learning. This plasticity involves changes in synaptic connections, as well as the generation and extinction of new and old neurons, which affects the structural and functional maturation of the prefrontal cortex (Tartt et al., 2022). Neuroplasticity in the brain is most active during childhood and adolescence, supporting cognitive development and laying the foundation for learning and adaptive behavior in adulthood. Therefore, studying and promoting neuroplasticity in the prefrontal cortex is crucial for understanding cognitive development, coping with brain injury, and treating neurodevelopmental disorders (J. Liu et al., 2023).

In summary, neuroplasticity is a crucial mechanism by which the brain adapts to the environment and learning challenges. It has far-reaching implications for cognitive development, recovery from brain injury, and treatment of neurodevelopmental disorders. By studying the principles and regulators of neuroplasticity in-depth, we can provide more precise and effective intervention strategies for brain health and development.

3. Sleep: a key element in the behavioral development of children and adolescents

Childhood and adolescence are critical periods for shaping and stereotyping an individual's physiological, psychological, and behavioral patterns. Sleep has a profound impact on the behavioral development of children and adolescents during this period, affecting not only their current physical and mental state but also their future behavioral patterns.

Sleep is also crucial for emotional stability, as it helps individuals relieve stress and reduce anxiety and depression, enabling them to remain calm and make rational decisions when faced with challenges. Emotional stability is a crucial indicator of mature behavior.

To promote the overall behavioral development of children and adolescents, it is essential to value and ensure adequate sleep time and improve sleep quality. Future studies should explore the intrinsic relationship between sleep and behavior further.

4. The critical role of sleep in prefrontal development and executive functioning in children and adolescents

Sleep plays a crucial role in the development of the prefrontal cortex and is essential for the maturation and optimization of its complex functions (Jiang, 2019). Adequate sleep duration and good sleep quality are critical for the structural and functional development of the prefrontal cortex, particularly during childhood and adolescence, when the prefrontal lobe undergoes rapid growth and remodeling (Dutil et al., 2018). Sleep promotes neuroplasticity, which influences memory consolidation, emotion regulation, and the development of executive functions such as decision-making, planning, inhibitory control, and attention maintenance (Stee & Peigneux, 2021). Research suggests that sleep deprivation or poor sleep quality may interfere with the development of these cognitive functions, which in turn affects learning ability, social behavior, and long-term mental health (Ballesio et al., 2019). Therefore, it is critical to ensure that children and adolescents receive adequate and high-quality sleep to promote healthy prefrontal development and overall cognitive functioning.

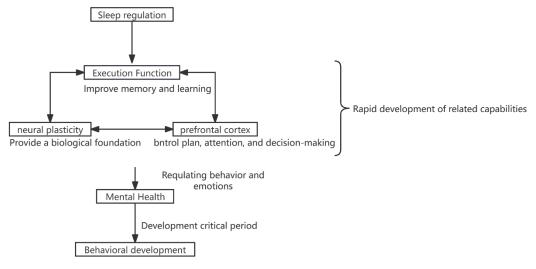


Figure 1

We think that the relationship between sleep regulation, behavioral development, and executive functioning in children and adolescents is shown in Figure 1.

5. Executive function, cognitive function and sleep: synergistic effects on child and adolescent development

There is a close interaction between executive function, cognitive function, and sleep, which collectively have a profound impact on the cognitive development, behavioral performance, and mental health of children and adolescents.

Cognitive functions encompass various aspects, such as perception, memory, and thinking, which are fundamental abilities for children and adolescents to acquire, process, and apply knowledge. Sufficient sleep enhances cognitive functions, including attention span, memory, and flexibility of thinking, thereby optimizing learning efficiency and creativity. Insufficient or poor quality sleep can impair cognitive functioning, which in turn affects children's and adolescents' learning and development.

To enhance executive functioning, a set of demanding cognitive training tasks can be developed to assist children and adolescents in exercising their abilities in planning, decision-making, and problem-solving. Simultaneously, by monitoring their emotional changes and social interactions, any issues can be identified promptly, and effective guidance and support can be provided. To develop cognitive functions, it is important to provide children and youth with stimulating learning resources and environments that encourage their interest in learning and creativity.

This promotes the balanced development of various cognitive abilities, laying a solid foundation for healthy growth and future success. By working together, families, schools, and communities can help create a healthier and more energetic younger generation. This can be achieved through ongoing scientific research.

References:

- [1] Acosta, M. T. (2019). [Sleep, memory and learning]. Medicina (B Aires), 79 Suppl 3, 29-32.
- [2] Badre, D., Kayser, A. S., & D'Esposito, M. (2010). Frontal cortex and the discovery of abstract action rules. Neuron, 66(2), 315-326. doi:10.1016/j.neuron.2010.03.025
- [3]Badre, D., & Nee, D. E. (2018). Frontal Cortex and the Hierarchical Control of Behavior. Trends Cogn Sci, 22(2), 170-188. doi:10.1016/j.tics.2017.11.005
- [4] Baker, C., Froudarakis, E., Yatsenko, D., Tolias, A. S., & Rosenbaum, R. (2020). Inference of synaptic connectivity and external variability in neural microcircuits. J Comput Neurosci, 48(2), 123-147. doi:10.1007/s10827-020-00739-4
- [5] Ballesio, A., Aquino, M., Kyle, S. D., Ferlazzo, F., & Lombardo, C. (2019). Executive Functions in Insomnia Disorder: A Systematic Review and Exploratory Meta-Analysis. Front Psychol, 10, 101. doi:10.3389/fpsyg.2019.00101
- [6] Bramson, B., Folloni, D., Verhagen, L., Hartogsveld, B., Mars, R. B., Toni, I., & Roelofs, K. (2020). Human Lateral Frontal Pole Contributes to Control over Emotional Approach-Avoidance Actions. J Neurosci, 40(14), 2925-2934. doi:10.1523/jneurosci.2048-19.2020
- [7] Caballero, A., Granberg, R., & Tseng, K. Y. (2016). Mechanisms contributing to prefrontal cortex maturation during adolescence. Neurosci Biobehav Rev, 70, 4-12. doi:10.1016/j.neubiorev.2016.05.013
- [8] Carpena, M. X., Matijasevich, A., Loret de Mola, C., Santos, I. S., Munhoz, T. N., & Tovo-Rodrigues, L. (2022). The effects of persistent sleep disturbances during early childhood over adolescent ADHD, and the mediating effect of attention-related executive functions: Data from the 2004 Pelotas Birth Cohort. J Affect Disord, 296, 175-182. doi:10.1016/j.jad.2021.09.053
- [9] Cavanagh, S. E., Wallis, J. D., Kennerley, S. W., & Hunt, L. T. (2016). Autocorrelation structure at rest predicts value correlates of single neurons during reward-guided choice. Elife, 5. doi:10.7554/eLife.18937
- [10] Chambers, A. M. (2017). The role of sleep in cognitive processing: focusing on memory consolidation. Wiley Interdiscip Rev Cogn Sci, 8(3). doi:10.1002/wcs.1433
- [11] Chen, Y., Wang, Y., Wang, S., Zhang, M., & Wu, N. (2021). Self-Reported Sleep and Executive Function in Early Primary School Children. Front Psychol, 12, 793000. doi:10.3389/fpsyg.2021.793000
- [12] Colrain, I. M., Nicholas, C. L., & Baker, F. C. (2014). Alcohol and the sleeping brain. Handb Clin Neurol, 125, 415-431. doi:10.1016/b978-0-444-62619-6.00024-0
- [13] Compans, B., Camus, C., Kallergi, E., Sposini, S., Martineau, M., Butler, C., . . . Hosy, E. (2021). NMDAR-dependent long-term depression is associated with increased short term plasticity through autophagy mediated loss of PSD-95. Nat Commun, 12(1), 2849. doi:10.1038/s41467-021-23133-9