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Abstract: In recent years, artificial intelligence, particularly deep learning, has garnered significant attention among 

practitioners and scholars in meteorology and atmospheric sciences, leading to a substantial body of literature. This study 

aims to delineate the present research status and trends in climate innovation through CiteSpace visual analysis. To 

comprehend the current landscape, prevalent terms, and research frontiers of deep learning for climate change research 

(DLCCR) within meteorology and atmospheric applications, we gathered 256 published papers spanning from 2018 to 

2022 from the Web of Science (WOS) core database. Employing these articles, we conducted co-authorship, co-citation, 

and keyword co-occurrence analyses. The findings unveiled a steady rise in DLCCR publications over the last five years. 

However, the correlation between high yield and high-citation authorship appears inconsistent and weak. Notably, prolific 

authors in this domain included Zhang Z.L. and Bonnet P. Furthermore, leading institutions such as the Chinese Academy 

of Sciences (China), le Centre National de la Recherche Scientifique (France), and Nanjing University of Information 

Science and Technology (China) have played pivotal roles in advancing DLCCR. The primary contributors among high-

yield countries primarily cluster in a select group comprising China, the USA, South Korea, and Germany. Identifying 

significant information gaps in numerical weather, atmospheric physics and processes, algorithm parametrizations, and 

extreme events, our study underscores the necessity for future researchers to focus on these and related subjects. This 

study provides valuable insights into research hotspots, developmental trajectories, and emerging frontiers, thereby 

delineating the knowledge structure in this field and highlighting directions for further climate innovation research. 

Keywords: deep learning; climate change; atmospheric sciences; visualization analysis; meteorology 

1. Introduction 

Climate change in the 21st century stands as the paramount threat to human survival and global 

sustainable development. As a result, there has been significant scholarly focus on devising innovative 

solutions to mitigate and adapt to this pressing issue[1,2]. Global warming, as a phenomenon, holds the potential 

to dramatically elevate global temperatures, leading to increased evaporation rates, heightened atmospheric 

water content, and subsequent alterations in rainfall patterns[3,4]. The acceleration of economic growth and 

industrialization intensifies human exploitation and intervention in the natural world, significantly impacting 

climate patterns and ecosystem development. Consequently, this has caused the depletion of natural resources 

across various ecosystems, the reduction of natural ecological areas, and the degradation of ecosystem 

services[5], consequently diminishing the capacity of climate systems to contribute to human well-being. 
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Artificial Intelligence (AI) has emerged as a powerful tool in addressing climate change, drawing swift 

attention, and providing innovative solutions. By leveraging AI for prediction and analysis in climate and 

weather forecasting, we acquire valuable tools that enhance accuracy and efficiency in evaluating future 

outcomes. Through its capacity to process vast amounts of data, recognize patterns, and forecast potential 

scenarios, AI introduces novel pathways for studying climate change, devising effective policies, and 

implementing adaptive measures. This transformative technology holds the potential to significantly bolster 

our endeavors in both mitigating and adapting to the challenges posed by climate change[6,7]. 

Applications of machine and deep learning offer diverse possibilities in addressing climate modeling[8,9], 

predicting extreme weather and drought events[10,11], analyzing climate data[12], optimizing renewable energy 

sources[13], downscaling global climate[14], monitoring carbon emissions[15,16], and facilitating climate change 

adaptation[6,17]. 

Bibliometric analysis employs computational methods to sift through extensive literature, granting 

researchers a profound understanding of a specific research field’s evolution and current status. By 

meticulously scrutinizing various publication items, this analysis not only reveals present conditions but also 

increase the capacity to predict future trends, offering invaluable insights for forthcoming scholarly 

inquiries[18,19]. CiteSpace software, a visualization tool developed by Chaomei Chen at Drexel University, USA, 

empowers researchers to visually explore and comprehensively comprehend research advancements across 

diverse scientific literature through knowledge mapping[20,21]. 

This paper presents a comprehensive overview of the climate change field, serving as a valuable resource 

for researchers seeking a foundational understanding of the subject. It conducts an in-depth analysis of current 

research in deep learning for climate change, delving into authorship, co-citation relationships, and keyword 

trends. Such analysis furnishes readers with an encompassing perspective of the research landscape, enabling 

a swift grasp of the field’s present state and primary research trajectories. Moreover, the paper identifies future 

research focal points in climate innovation, underscoring the significance and efficacy of AI. By staying abreast 

of these trends, researchers can align their work more effectively with the evolving climate change research 

landscape, curbing wastage of time and resources while promoting human-centered research practices. 

The authors aim to showcase a systematic review process employing visual analytic functions embedded 

in CiteSpace software[22] within this paper. This methodological approach facilitates a comprehensive literature 

analysis, enabling researchers to visualize connections and trends in research topics pertaining to climate 

change and AI. The systematic review aspires to offer a structured approach to synthesizing existing 

knowledge, pinpointing research gaps, and charting pathways for future studies in this dynamic and evolving 

field. 

2. Current state of research 

Tapping the value of AI in DLCCR 

The utilization of AI to tackle climate change encompasses a wide array of applications[23]. These 

endeavors strive to address challenges stemming from environmental fluctuations exacerbated by economic 

growth and population expansion, leading to an amplified demand for energy. Deep learning emerges as a 

pivotal solution, holding promise in predicting energy demand, optimizing consumption, and fostering 

sustainability[24]. Despite its effectiveness in boosting energy efficiency, hurdles such as high implementation 

costs, data scarcity, and a shortage of experts persist[25–27]. 

Recent advancements in deep learning have facilitated successful predictions of weather and climate 

extremes. Researchers have made significant strides in forecasting events like hail[28], extreme heatwaves, 
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droughts[29], and precipitation across various time scales[30]. For instance, applications such as convolutional 

neural networks (CNN), long and short-term memory (LSTM), and Extreme Gradient Boost (XGB) have been 

employed to predict extreme temperature events and drought within decadal time series[31–33]. 

DL-based weather and climate predictions have gained widespread attention across industries, 

demonstrated by innovative models like Pangu-Weather, ClimaX, GraphCast, and FourCastNet[34–37]. The 

integration of deep learning into models such as ModEx[38] is driven by the necessity to enhance Earth System 

Models (ESMs) with observational data[39]. In climate models with coarse horizontal grid spacing, statistical 

downscaling, and bias correction are vital for accurate representation[40,41]. 

Significant strides have been made in recent progress in bias correction methods, notably improving 

aspects like initial state quality control and sub-seasonal climate oscillation predictions[42,43]. DL algorithms 

contribute to early warning systems by processing real-time weather data, including satellite imagery and radar 

observations, to detect patterns and predict extreme climate events[44]. These algorithms can analyze large 

datasets of climate-related information, unveiling patterns, trends[45,46], and correlations that may not be evident 

through traditional analysis methods[47]. 

Moreover, DL plays a pivotal role in monitoring and managing carbon emissions[48], identifying sources, 

evaluating mitigation efforts, and contributing to the development of effective carbon reduction strategies[49]. 

Additionally, AI supports climate change adaptation by analyzing diverse datasets, identifying 

vulnerabilities[50], and assisting in planning and implementing adaptive strategies[51,52]. 

In recent years, increased attention has been devoted to applying deep learning techniques to predict 

oceanic conditions, particularly for seasonal to multi-year forecasts[53,54]. Initial efforts focused on directly 

predicting key indices such as the NINO 3.4 index[12]. For instance, Ham et al.[55] utilized a convolutional 

neural network (CNN) to generate skilled El Niño Southern Oscillation (ENSO) forecasts with a lead time of 

up to one and a half years[55]. 

3. Research methods and tools 

3.1. Related theories and conceptual terms 

The surge in academic publications has spurred interest in bibliometric research, leveraging the distinct 

characteristics of bibliometric data to construct a comprehensive overview for further analysis[56]. Scientific 

knowledge mapping, an interdisciplinary field amalgamating applied mathematics, information science, and 

computer science, has recently emerged within the realm of science metrology. 

The primary goal of knowledge mapping and analysis is to extract and visually restructure knowledge 

from a vast collection of scientific research documents, facilitating knowledge discovery[20]. The visualization 

of scientific knowledge, employing social network analysis and graph theory, has emerged as a burgeoning 

field within bibliometric methods[1]. 

3.2. Research tools 

This study utilizes CiteSpace 6.2.R4, a bibliometric analysis software deeply rooted in scientometrics and 

knowledge visualization, developed by Chaomei Chen. Additionally, the study specifically aims to unveil 

potential knowledge within scientific literature (see Figure 1). It assists researchers in comprehending 

fundamental aspects within a discipline, identifying foundational work, pinpointing research frontiers, and 

elucidating the contextual evolution of research[57,58]. Moreover, the software transforms research domain 

concepts into mapping functions, establishing connections between research boundaries and intellectual bases. 

Within this framework of mapping functions, three key concepts surface, each addressing distinct challenges: 
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(a) discerning the nature of the research frontier, (b) annotating the research domain, and (c) recognizing new 

trends and shifts over time[57]. 

 
Figure 1. Major visual analytic paths supported by CiteSpace[57]. 

3.3. Data collection 

The Web of Science (WoS) database serves as the primary data source for this study, meticulously curated 

to include essential literature. WoS stands as the gold standard for research discovery and analysis, 

interconnecting publications and researchers across various disciplines through its comprehensive citation and 

indexing databases. Utilizing reference searches, previous research within the fully indexed period of five 

years, from 2018 to 2022, can be meticulously tracked and monitored. The data processed by the CiteSpace 

software aligns with the WoS data download format, leveraging the extensive coverage of references, indexes, 

and researcher relationships. 

3.3.1. Eligibility criteria 

This study primarily utilized the SCIE database within the WoS Core Collection as the main data source. 

A specific search strategy was employed, and data were collected from the web version of the Nanjing 

University of Information Science and Technology (NUIST-China) Library. WoS offers multiple search 

strategy combinations, and CiteSpace focuses on tracking and analyzing the evolution of a topic, leading to 

improved outcomes for targeted topic retrieval. Subject words within WoS are derived from titles, abstracts, 

keywords, and full texts. Given the scholarly nature of articles, a longer publication span was preferred to 

compile a more comprehensive body of literature[58]. 

3.3.2. Including methods 

In this study, the core set of the WoS database functions as the data source, utilizing the search strategy 

(Topic = “Deep learning” AND “climate change”, Document Types = “Article”, Research Areas= 
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“Meteorology Atmospheric Sciences”, Languages = English). This strategy yielded a total of 256 articles as 

of 3 May 2023 (see Figure 2). To ensure data accuracy, the study meticulously reviewed the titles and abstracts 

of all articles, confirming that the collected data fully met the specified criteria. Subsequently, the article data 

were stored in “Plain text” format as “Full Record” and “Cite References” to facilitate further analysis. 

Although the dataset obtained for this study is relatively small, it fulfills the prerequisites for conducting 

CiteSpace analysis[59]. 

 
Figure 2. Research citations and different selections. 

To analyze the field, we employed bibliometric techniques alongside CiteSpace 6.2.R3 software and 

Excel charts for visual representation. CiteSpace analyzes each bibliographic record, encompassing the title, 

abstract, authors, and their respective affiliations. These authors referred to as co-authors, denote collaborative 

bonds through their co-authorship[60]. 

3.3.3. Excluding methods 

Review papers, meeting reports, and irrelevant, and duplicate documents were excluded from the dataset. 

Despite the relatively small size of the dataset obtained for this study, it meets the prerequisites for conducting 

CiteSpace analysis (refer to Table 1). 

Table 1. Steps of data selection including and excluding methods criteria. 

Filter Selection Excluding n 

First selection “Deep learning” and “climate change” / n = 1128 

Publication years 2018–2022 (5 years) 2023 n = 728 

Document type Article Review article n = 599 

Author All 
 

n = 599 

Database Web of science / n = 599 

Country All / n = 599 

Research area Meteorology and atmospheric science 
 

n = 284 

Language English / n = 284 

CiteSpace integration All paper 28 papers (duplication) n = 256 

Total N = 256 

Through this approach, we scrutinized publication counts, authorship trends, and prominent research 

areas. Employing knowledge mapping and Excel charts, we delved into the current state and emerging patterns 

in ecosystem services research over the past five years. Additionally, we created visual charts illustrating 

country-wise distribution, institutional affiliations, author collaboration networks, keyword co-occurrence, and 

keyword clustering[61]. 
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4. Visualization results and analysis 

4.1. Analysis of the number of published papers 

Figure 3 depicts the rapid advancement of DL research within the realm of climate change, notably from 

2018 onwards. It illustrates a substantial surge in published papers, signifying the escalating interest and 

involvement in this domain. Further scrutiny reveals particular years, such as 2019, 2020, and 2021, as pivotal 

milestones in the trajectory of DLCCR (see Figure 3). 

 
Figure 3. The number of published papers on DLCCR from 2018 to 2022. 

4.2. Co-authorship analysis 

Co-authorship manifests across three distinct levels: individual, institutional unit, and country. 

Analyzing co-authorship unveils collaboration dynamics among research institutions and their 

respective capabilities[62]. This technique aids in identifying key authors and collaborative networks 

among scholars in climate innovation, offering insights into research progression and international 

cooperation in climate-related studies[63]. 

4.2.1. Author co-authorship analysis 

Authorship represents the smallest unit in a publication. By conducting author co-authorship analysis, we 

glean insights into publication statuses at a micro level. We constructed a graphical network depicting author 

co-authorship within the SCIE database. Figure 4 summarizes information about the top 10 authors based on 

publication count. Figures 5 illustrate academic collaborations among authors. 

 
Figure 4. Top 10 authors with the highest research paper activity in DLCCR. 
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Figure 5. The academic collaboration among authors. 

To craft cohesive network co-occurrence graphs, we set suitable thresholds and eliminated isolated nodes, 

preserving the most pertinent information within the graph. Each node is labeled with the respective author’s 

name. Node size corresponds to the number of articles published by the author, while the lines connecting 

nodes signify collaborations between authors. The thickness of these lines indicates the strength of the 

connections among authors. 

The network displays a low number of nodes, suggesting limited collaboration among authors and issuing 

institutions. Among the most prolific research teams in this network is a three-member team led by Shang J, 

Bonnet Pierre, and Joly Alexis, constituting the largest research team. Overall, there appears to be a lack of 

collaboration among researchers, with a tendency toward individual studies. Even in cases of collaboration, 

the teams tended to be relatively small. However, within the SCIE database, authors showed a greater 

inclination to collaborate, forming larger teams compared to other databases. While authors predominantly 

collaborated with peers from their own country, there were instances of inter-country authorships, indicating 

a degree of collaboration transcending geographical boundaries. 

4.2.2. Institution co-authorship analysis 

The identified authors were affiliated with various institutions, offering opportunities for these institutions 

to establish moderate-level collaborative networks through co-authorship. We visualized the co-authorship 

networks among institutions in SCIE (refer to Figure 6), providing a summary of the top 20 institutions based 

on publication count and relevant information. The findings remained consistent in both cases. 

In terms of publication numbers, the top five institutions are the Chinese Academy of Sciences (China), 

Centre National de la Recherche Scientifique-CNRS (France), Nanjing University of Information Science and 

Technology (China), Helmholtz Association (Germany), and the University of Chinese Academy of Sciences 

(China), along with the University of California (USA) (refer to Figure 6). 

Moreover, the CiteSpace analysis reveals the presence of 40 research institutes with limited collaboration 

links within the institute collaboration network. Figure 7 illustrates that the majority of nodes are isolated 

points (1%), indicating that nearly all results have been accomplished by individual authors, suggesting 

minimal collaboration between institutions. The collaborative experiences among institutions are notably 

limited, and the intensity of collaboration appears very weak (see Figure 7). 
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Figure 6. Co-authorship networks of institutions in SCIE. 

 
Figure 7. Map of the institution co-authorship network of DLCCR for SCI database. 

4.2.3. Keywords co-authorship analysis 

The selected keywords in this study represent the central themes and core content of the research. To trace 

developmental trends, this paper utilizes keyword co-occurrence analysis. Nodes characterized by high 

frequency and centrality in co-occurrence analysis are typically considered key nodes, signifying their 

significant influence across the entire network. Delving into these key nodes enables the extraction of valuable 

information embedded within them[58]. The keywords can be categorized into two primary groups: “Deep 

learning” and “Climate change”, encompassing Atmospheric science and meteorology. The primary focus of 

the research revolves around predicting climate change and conducting model analysis using AI technology. 

Through mapping the keywords, we’ve identified the following clusters[64]. 

Artificial neural networks possess the capability to manage enormous volumes of data. These networks 

operate by processing data through multiple layers within the program. There are various types of artificial 

neural networks (refer to Figure 8 and Figure 9). 
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Figure 8. keywords co-authorship networks. 

 
Figure 9. Top 8 keywords with the strongest citation bursts. 

In Figure 9, the top 8 keywords exhibiting notable citation bursts are highlighted. The keyword with the 

highest citation strength across all papers is “convolutional neural network” (1.68), followed by “Forest” (1.48) 

and “classification” (1.3). Subsequently, “index” holds a citation strength of 1.18, followed by “LSTM” (1.07), 

“Abundance” (0.9), “algorithms” (0.84), and “performance” (0.68). These findings underscore the significant 

keywords driving attention and interest within the research landscape. Moreover, AI techniques are 

increasingly employed for predicting certain climate change parameters, particularly in the area of 

convolutional neural networks, which stands as an area of significant interest. 

4.2.4. Country co-authorship analysis 

Figure 10 illustrates the trend in annual publication numbers from the top 10 productive countries 

between 2018 and 2022. A total of 64 regions/countries contributed to the field of DLCCR research, with the 

top 10 countries making significant contributions to the total outputs (refer to Figure 10). The network of 

collaborating countries comprised 152 nodes and 58 links (see Figure 11). 

The People’s Republic of China emerges as the foremost contributor, boasting a total of 93 published 

papers. Following closely is the United States with 71 papers, trailed by South Korea with 28 contributions. 

Within the European region, noteworthy contributions come from Germany with 22 papers and France with 

19, establishing a diverse global distribution of research output in the field (refer to Figure 10). 
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The CiteSpace analysis revealed a total of 64 countries and regions, encompassing 54 collaboration links 

(refer to Figure 11). This suggests prevalent cross-country and cross-region connections within the research 

landscape. Generally, the volume of outputs correlates with the presence of research institutions, the 

availability of research funding, and the involvement of leading institutions in AI research. While the network 

demonstrates frequent links between countries and regions, the strengths of these connections tend to be 

relatively weak, indicating that collaborative efforts across borders are present but not yet firmly established. 

Remarkably, China, the United States, South Korea, Germany, and France emerge as the top countries in terms 

of publication volume. Notably, China leads in both publication citations and collaborative efforts. 

 
Figure 10. scientific BDFCCR production for each country. 

 
Figure 11. Visualization of the co-country network. 

5. Discussion 

The existence of pivot nodes allows us to swiftly narrow our visual search to a handful of excellent 

candidate nodes, a promising outcome. Easily pinpointing these pivotal points is crucial for effectively 

detecting paradigm shifts in a knowledge domain. The smaller network, incorporating these turning points, is 

notably clearer, while the larger, unpruned network appears cluttered. Nonetheless, it’s still plausible to 

identify multiple pivot points within it. 
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However, our bibliometric analysis in this study encountered limitations. Primarily, we solely utilized the 

WOS database due to restricted access provided by our research institution. It’s important to note the existence 

of other publicly available and commercial bibliometric databases like Scopus and PubMed. Although WOS 

enjoys global recognition for its longstanding history and being the primary bibliographic database before 

Scopus, it has coverage limitations compared to Scopus. 

Additionally, our search strategy employed specific keywords related to climate change variables, such 

as deep learning, meteorology, climate change, and atmospheric sciences. This approach might have restricted 

the identification of studies covering all aspects of climate change. Therefore, future studies could benefit from 

broader search strategies to comprehensively explore the literature on this topic. 

Future trends of DLCCR 

Ensuring responsible AI use is vital in addressing climate issues, steering clear of unnecessary reliance 

on technological solutions, and establishing realistic expectations[65]. The study highlights the importance of 

frameworks to address gaps and adaptability in deep learning for climate modeling[7]. Seamlessly integrating 

climate and digital transitions is crucial while upholding scientific values[6]. The future path of AI in climate 

change necessitates increased international cooperation aligned with broader climate initiatives. For instance, 

it’s critical to identify and tackle risks, particularly in countries less capable of strategizing adaptations[24]. 

Moreover, collaborative events and projects, such as forums and conferences, should facilitate discussions 

among governments, scientists, and experts on AI development, as demonstrated by the Global Partnership 

Conference in December 2020[23,66]. Future efforts in deep learning should streamline access to data and digital 

infrastructure[67]. Challenges persist in validating climate model simulations, especially for longer timescales 

and rare events[68]. Overcoming these challenges involves diverse strategies, including undersampling, 

hyperparameter optimization, and custom loss functions. 

Recent research must address limitations in data quality and quantity, foster interdisciplinary 

collaboration, enhance model interpretability, and resolve issues related to fidelity prediction, such as 

overparameterization[69]. Addressing data coverage issues and bridging communication gaps is crucial. The 

challenge extends to potential biases and uncertainties in representing climate models within deep learning 

frameworks. Inconsistencies in AI results underscore the complexity of climate applications. Integrating deep 

learning with traditional models and staying attentive to emerging gaps contributes to a comprehensive 

understanding of climate change dynamics[70]. 

Ensuring model transferability across diverse regions, effective management of computational resources, 

and quantifying uncertainties are crucial. Urgent development of causal methods considering the physical 

characteristics of studied climate phenomena is necessary. Mitigating limitations in observational records, 

addressing class imbalances, and characterizing extreme event precursors can be achieved through advanced 

deep-learning algorithms. In the near future, deep learning can enhance open-source micro-scale comparative 

analysis data limitations, providing a reasonable basis for uncertainty quantification and combining data-based 

and physics-based approaches for improved spatiotemporal downscaling. 

6. Conclusion 

Once adaptation and mitigation strategies for climate change are developed, sustainable development for 

human societies will become attainable. The field of Deep Learning and climate change research has seen 

rapid expansion in recent years. The annual volume of published articles has steadily increased from 2012 to 

2021. While the majority of scholars come from China and the United States, significant contributions to 

cooperative network development come from the United States and South Korea. The Chinese Academy of 
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Sciences stands out as the dominant research institution. However, there’s room for improvement in 

collaboration among research institutions, which could significantly benefit this research field. 

Expanding the number of predicted parameters, especially through the combined use of AI and 

environmental science methods like long short-term memory (LSTM) and neural network algorithms, is 

currently a research hotspot. Future research should prioritize the prediction of climate variable concentrations. 

Additionally, direct government support for research, innovation, and the implementation of AI technologies 

in climate change domains is crucial. This review paper can assist scientists across various domains in 

promoting the responsible integration of AI for climate action. Ultimately, it contributes to advancing climate 

change research and facilitates the process of climate change adaptation. 
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