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Abstract: There are more and more large-scale data models with high dimensions, but these large-scale data often have strong noise 
and	sparse,	which	is	troubled	by	information	loss,	noise	infl	uence	and	small	sample.	Nowadays,	there	is	a	demand	for	extracting	eff	ective	
content from chaotic information in many fields, such as pattern recognition, machine learning and data mining, among which robust 
principal	component	analysis	is	a	common	method	to	separate	eff	ective	information	from	these	raw	data.	Aiming	at	the	traditional	algorithm	
of robust principal component analysis, this paper establishes a new optimization model by assigning new coefficients to the low-rank 
matrix,	which	has	a	better	correlation	to	the	original	matrix	and	improves	the	accuracy	problem	without	changing	the	solving	speed.
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1. Introduction
Principal component analysis (PCA) is a common step for preprocessing and denoising, in which a low-order approximation is made to 

an	input	matrix,	such	as	a	covariance	matrix.	While	PCA	is	easy	to	implement	through	feature	decomposition,	it	is	sensitive	to	the	presence	
of	outliers	because	it	attempts	to	“force	fi	t”	outliers	into	low-rank	approximations.	To	overcome	this	problem,	the	concept	of	robust	PCA	
(RPCA)	was	proposed	with	the	goal	of	removing	sparse	missing	from	the	input	matrix	and	obtaining	a	low-rank	approximation.

At	present,	the	principal	component	analysis	of	component	data	has	been	deeply	studied	in	the	selection	of	data	processing	methods.	
It is common to carry out principal component analysis on the data after logarithmic ratio conversion, and obtain the corresponding data 
processing	method,	so	as	to	establish	a	complete	analysis	system,	and	widely	used	in	the	analysis	of	component	data.

For	the	most	common	improved	model	of	PCA,	the	robust	Principal	component	analysis	model	(RPCA)	has	become	a	research	hotspot	
in	recent	years.	However,	 the	traditional	RPCA	model	ignores	the	infl	uence	of	samples	with	large	reconstruction	errors	and	damages	the	
eff	ective	information	of	these	samples	in	the	principal	component	space.	The	fi	rst	problem	is	that	such	information	will	reduce	the	ability	of	
PCA	to	extract	principal	components	of	data.	Therefore,	this	paper	improves	the	traditional	RPCA	model	in	order	to	obtain	an	RPCA	model	
with	less	losses.

2. Preparation Knowledge
2.1	Principal	Component	Analysis	(PCA)
Principal	Component	Analysis	(PCA)	is	a	common	data	analysis	method.	Its	main	functions	are	as	follows:	one	is	to	extract	the	main	

feature	components	of	the	data;	the	other	is	to	reduce	dimension	data,	which	is	commonly	used	in	high-dimensional	matrix	processing.	The	
main	means	to	achieve	this	algorithm	is	the	mapping	of	diff	erent	dimensions,	for	example,	the	original	matrix	features	are	N-dimensional,	
the original data features are mapped to m dimension, the m dimension obtained is the mapped new orthogonal feature, the reconstructed 
M-dimensional	feature	is	called	the	principal	component	obtained	on	the	basis	of	the	original	feature.	Therefore,	the	means	of	dimensionality	
reduction	of	PCA	is	to	retain	the	features	containing	most	of	the	variance	from	the	original	space,	and	on	this	premise,	to	fi	nd	each	group	of	
orthogonal	coordinate	axes	sequentially,	and	ignore	the	noisy	part	with	almost	zero	variance	which	has	little	infl	uence	on	the	experiment,	so	
as	to	achieve	dimensionality	reduction	of	the	data.

2.2	Robust	Principal	Component	Analysis	(RPCA)
In order to isolate low-rank structures from raw data with sparse large noise, Chandrasekaran et al and Wright et al independently 

proposed	robust	principal	component	analysis	(RPCA)	models.	The	main	principle	of	RPCA	is	to	represent	the	data	contained	in	the	original	
matrix	as	two	parts,	that	is,	the	sparse	invalid	part,	that	is,	the	noise;	And	the	eff	ective	low-rank	part,	which	refers	to	the	information	space	
of	the	data.	Therefore,	the	original	matrix	can	be	separated	by	using	the	rank	and	L-0norm	of	the	matrix,	and	the	desired	low-rank	matrix	
and	sparse	matrix	can	be	constrained	respectively.	However,	traditional	solving	methods	are	diffi		cult	to	deal	with	NP-hard	and	non-convex	
models,	and	the	rank	function	and	L-0norm	of	the	required	matrix	belong	to	such	problems.	Therefore,	in	order	to	eff	ectively	optimize	the	
model,	Candes	et	al.	gave	a	theoretical	proof	that	in	order	to	accurately	separate	the	low-rank	space	and	sparse	noise	of	the	original	data	
under	certain	conditions,	this	requirement	can	be	achieved	by	optimizing	the	kernel	norm	of	the	low-rank	matrix	and	the	L-0norm	of	the	
sparse	matrix.	Then	the	problem	of	optimizing	the	nuclear	norm	and	L-0norm	is	usually	called	the	robust	principal	component	analysis	
model.

Assuming	that	the	given	original	data	matrix	D�Rm*n	has	A	structure	space	of	low	dimension,	then	the	matrix	can	be	represented	as	
the	sum	of	two	matrices,	that	is,	D=A+E,	where	the	matrix	A�Rm*n	is	of	low	rank.	The	purpose	of	principal	component	analysis	(PCA)	is	
to	fi	nd	A	low-rank	matrix	A	that	has	the	least	error	from	the	matrix	E=D-A.	We	can	set	up	the	following	optimization	problem:	

,
min || ||
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Where,	is	the	Frobenius	norm	of	the	matrix,	representing	the	maximum	rank	of	the	matrix. || ||FE E r A

3 Model Construction
3.1	Improvements	to	RPCA
This paper attempts to improve the traditional RPCA model by adding coefficients to the low-rank matrix A obtained from the 

decomposition	of	the	original	matrix	as	weight	coeffi		cients	in	the	calculation	process,	so	as	to	ensure	that	the	decomposed	matrix	retains	
more	components	of	the	original	matrix.1 λ− 0 1λ< <

The	initial	optimization	problem	of	D=A+E	(2-1)	has	been	obtained	in	the	above	article.	Then,	in	order	to	further	optimize	the	matrix	
D, the singular value decomposition is performed, and the feature space of the new matrix obtained after the singular value decomposition 
is	analyzed	according	to	the	required	conditions.	The	required	solution	can	be	obtained	by	retaining	the	feature	space	corresponding	to	the	
fi	rst	r	maximum	singular	values	required.	According	to	the	above	principles,	 the	RPCA	algorithm	can	be	described	as	follows:	given	the	
original	matrix	D=A+E,	where	A	is	low-rank,	E	is	sparse,	and	its	element	values	can	be	arbitrarily	large,	try	to	restore	matrix	A.	In	order	to	
achieve	this	goal,	the	lowest	rank	matrix	A	and	the	matrix	E	with	the	fewest	non-zero	elements	can	be	searched.	Based	on	this	principle,	the	
following optimization problem is established: 
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(3, 1)
Representing	the	rank	function	of	the	matrix	in	this	biobjective	optimization	problem,	representing	the	norm	of	the	matrix.	 ( )rank A A

0|| ||E E 0l In order to transform the biobjective optimization problem into a simpler single objective optimization problem, the following 
convex optimization problem is obtained by introducing the equilibrium parameters: 0 1λ< <
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Then	model	(3-2)	is	the	improved	robust	principal	component	analysis	model.	It	is	then	proved	that	in	most	scenarios,	the	recovery	of	
low-rank matrix A and sparse matrix E only needs to consider solving the convex optimization problem (3-2) and optimizing its obtained 
results.

3.2	Coordinate	axis	descent	method
Firstly,	the	concept	of	soft-thresholding	operator	is	given:
Defi	ne	3.1	If	a	function	is	of	the	shape

,     
( , ) 0, 								 | |

,      

x t x t
soft x t x t

x t x t

+ ≤ −
= ≤
 − ≥

Where,,	then	it	is	called	a	soft	threshold	operator. x R∈ 0t >
The	above	defi	nition	of	the	soft	threshold	operator	can	also	be	generalized	to	matrix	form.
Lemma	3.1	Let	the	singular	value	of	the	matrix	be	decomposed	as,	the	rank	of	the	matrix	is,	where,	is	singular,	then	there	is	a	closed	

solution to the kernel norm minimization problem: TW U V= Σ r 1 2( , , )rdiag σ σ σΣ =  1 2, , rσ σ σ

21[ ] ( ) argmin || || || ||
2

t
zG W Usoft V X X Wε ε= = + −∑

For	the	solution	of	the	new	RPCA,	it	can	be	calculated	using	the	augmented	Lagrange	multiplier	method	(ALM)	:
Firstly,	the	Lagrange	multiplier	matrix	Y�Rm*n	is	introduced	to	construct	the	Lagrange	function

* 1( , , ) (1 ) || || || || ,L A E Y A E Y D A Eλ λ= − + + < − − >

Add a positive scalar as a penalty term µ

2
* 1( , , , ) (1 ) || || || || , || ||

2 FL A E Y A E Y D A E D A Eµµ λ λ= − + + < − − > + − −

Using	the	descending	method	of	axes,	fi	x	the	other	axes	and	fi	nd	an	extreme	value	for	one	axis
Fix,	solve,	have , ,A Y µ E

2
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 Equivalent to solving
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The	iterative	formula	that	can	be	obtained	from	lemma	3.1: kE

2
1 1argmin || || || ( ) ||
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The same goes for
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The iterative formula of the available matrix obtained from the above formula,, 1kA + 1kE + Y

1 1 1( )k k k k kY Y D A Eµ+ + += + − −

Finally	set	the	constant,	the	updated	formula	of	the	available	parameters: 1ρ > µ

1k kµ ρµ+ =

3.3	Algorithm	steps:
Enter the initial matrix and balance parameters 0 0D A E= + ( )m nD R ×∈ 0 1λ< <

Give	the	positive	scalar	and	Lagrange	multiplier ,µ ρ 0Y

Ream, repeat the following iterations until convergence: 0k =

1
1( , )k

k k
k k

YA soft D E λ
µ µ+

−
= − +

1 ( , )k
k k

k k

YE soft D A λ
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1 1 1( )k k k k kY Y D A Eµ+ + += + − −

1k kµ ρµ+ =

Output	the	desired,	matrix. kA kE

4 Summary
In	this	paper,	by	changing	the	coeffi		cient	of	low-rank	matrix	A	in	RPCA	algorithm	and	introducing	the	equilibrium	parameter,	a	new	

formula	of	RPCA	algorithm	is	obtained.	The	matrix	decomposed	by	this	method	has	a	higher	correlation	with	the	original	data,	and	tries	to	
get	a	better	convergence	eff	ect	under	the	condition	that	the	convergence	speed	is	consistent.
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