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Abstract: Market volatility prediction is of great significance in the financial field, and is crucial to investment decision-making and

risk management. In order to predict market volatility more accurately, high-frequency data and mathematical financial methods will

be combined. High-frequency data provide more detailed market information, while mathematical financial methods provide rigorous

models and tools. By combining high-frequency data and mathematical financial methods, it is expected to achieve accurate

forecasting of market volatility. Specifically, it is hoped that it can reveal the volatility asymmetry and volatility aggregation of market

volatility, and provide real-time and dynamic volatility forecasts. This will help investors and risk managers to better understand and

assess market risks, so as to formulate more effective investment and risk management strategies.
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1. Introduction
Market volatility forecasting is essential for investment and risk management. However, accurately predicting volatility is

challenging due to its complexity and variability. High-frequency data, capturing market dynamics over short timeframes, has gained

attention from researchers [1]. It provides richer information and enables micro-level analysis of market fluctuations. Yet, analyzing

large volumes of high-noise data requires new methods. Mathematical financial methods, such as stochastic processes and partial

differential equations, are widely used in financial market modeling [2]. Integrating high-frequency data with mathematical methods

enhances volatility forecasts. This combination explores new perspectives and methods for volatility prediction.

2. Models and features of high-frequency data
High-frequency data provides new perspectives and methods for analyzing and predicting market volatility. In Table 1, volatility

asymmetry and aggregation are key characteristics. Volatility asymmetry models (e.g., EGARCH, TARCH, GJR-GARCH, APARCH,

VS-GARCH) examine the impact of positive and negative information on volatility, including the leverage effect [3]. Estimation

methods include maximum likelihood estimation, generalized moment estimation, and Bayesian analysis. Volatility aggregation

models (e.g., GARCH-M, EGARCH, STARCH, SWARCH, HGARCH) capture market changes. For instance, the GARCH-M model

links conditional standard deviation to expected returns, while the SWARCH model transitions between different ARCH models to

capture large market changes and consider aggregation [4].

Table 1 Correlation models and their characteristics for high-frequency data estimation

nature Model model features estimation method

volatility

asymmetry

①Asymmetric EGARCH

model adopted by

Nelson.②TARCH model

proposed by Zakoian.③GJR

-GARCH model proposed

Model ① analyzes the impact of

different news on stock volatility. Model

② adds nominal variables to the

conditional variance to distinguish the

impact of positive information and

⑴use approximation or

simulation The method of

constructing the model

The likelihood function of

and without Conditional
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by Glosten, Jagannathan and

Runkle.④APARCH model

proposed by Ding, Granger

and Engle.⑤VS -G ARCH

model proposed by Fornari

and Mele.

negative information on volatility.

Model ③ adds seasonal items to the

GARCH-M model to distinguish

positive and negative information. There

are different effects of negative shocks

on stock price fluctuations. Model ④

has two more parameters than GARCH

to study the leverage effect in the stock

market. Model ⑤ can describe the

asymmetric reverse effect.

moments, e.g. max

likelihood estimation

(QML), Generalized

moment estimation

(simulate ML), effective

moment estimation

method ( EMM), etc.

⑵Basic Based on

Bayesian principle

parameter posterior

distribution score

Analysis, example: Gibb

sampling method in

( MCMC ) method to

estimate the model, etc.

Volatility

aggregation

GARCH-M model

①proposed by Engle, Lilien

and Robbins. © EGARCH

model ② proposed by

Nelson.③ STARCH model

proposed by Harvey, Ruiz

and Sentana.④ Cai,

Hamilton and Susmel

Proposed SWARCH

Model.⑤ HGARCH model

proposed by Daccorog et al.

Model ① introduces the conditional

standard deviation into the mean

equation in order to make the expected

rate of return closely related to risk.

Model ② avoids the non-negative

assumption of parameters. Model ③

requires Kalman filter to be estimated.

Model④, the SWARCH model

proposed by Cai, Hamilton, and Susmel,

assumes several different states of

volatility to capture the effect of large

market changes. The ARCH model of

the GARCH model is converted

between them through the Markov

chain. Model ⑤ introduces the time

scale transformation processing

technology in the condition and variance

item of the GARCH model.

long-term

memory

effects,

volatility

autocorrelatio

n coefficient

of double

Curve Decay

process (5).

① Granger, Joyeus and

Hosking proposed up

ARFIMA model. ② Baillie,

Bollerslev and Mikkelsen

came up with FI-GARCH

model and Bollerslev and

Mikkelsen Proposed

F1EGARCH model. ③

Zumbach came up with

LM-ARCH model. ④ Beidt

et al proposed long-term

memory random wave

Dynamic (LM-SV) model *

⑤ Ding and Granger 's

long-term memory ARCH

model. ⑥ Robinson and

Model ① combines fractional difference

noise and ARMA model. Model ②

explains the heteroscedasticity of

sequence changes and long-term

memory variability. Model ③

introduces weights into real fluctuations.

Model ⑤ ⑥ are primarily designed to

reflect the hyperbolic decay of

autocorrelation coefficients in the nature

of the process.
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Zaffaroni 's long-term

memory Nonlinear moving

average model.

3. Characteristics of Mathematical Finance Methods
Mathematical financial methods, incorporating stochastic processes, probability theory, and partial differential equations, offer a

robust theoretical framework and tools for interpreting and forecasting market volatility by rigorously encapsulating the complex

dynamics of financial markets.

Stochastic processes are one of the main tools for describing the dynamics of financial markets. For example, geometric

Brownian motion is a common stock price model, and the dynamics of stock price S can be expressed as: dS / S dt dW   ,

where μ is the expected rate of return, σ is the volatility, and W is the Brownian motion. By solving this stochastic differential equation,

we can get the expected change of the stock price in a given time interval [5] .

Probability theory provides tools for quantifying risk and uncertainty in financial markets. For example, value at risk is a common

risk measurement method, which  VaR_  indicates the maximum possible loss of a portfolio under the confidence level of α.

Partial differential equations are widely used in fields such as option pricing. The most famous model in the field of options

pricing is probably the Black-Scholes model, which is known for its pricing formula: C SON(d1) Xe { rt} ( d2)N   ,

where N is the standard normal distribution function, and d1 and d2 are based on the stock price, strike price, risk-free interest rate,

time to maturity, and Volatility is a function of the parameter. Overall, mathematical financial methods, with their theoretical rigor and

wide applicability, provide powerful tools for analyzing and predicting market volatility.

4. Combining high-frequency data and mathematical financial methods to predict
market volatility

Combining high-frequency data and mathematical financial methods to predict market volatility, the basic idea is to use the model

fitted by high-frequency data to update in real time, and then combine mathematical financial methods to predict. Taking the GARCH

model as an example, its mathematical representation is as follows:

2 2 2
0 1 ( 1) ( 1)(1)t t        

Among them, 2 represents the market volatility at time t, 2 ( 1)t  represents the square of the error in period t-1, and

2 (t 1)  represents the volatility in period t-1. When high-frequency data is obtained, a shorter time interval (such as minutes or

seconds) can be used to fit the GARCH model to obtain more 0 1, ,   parameter values. Predictions can then be made by updating

parameter values in real-time in conjunction with newly acquired data.

Mathematical financial methods like Monte Carlo simulation can optimize forecasts by conducting numerous simulations of

future market volatility using recent parameter values. This produces a forecasted volatility distribution, facilitating the calculation of

key risk indicators such as value-at-risk and expected loss. This method allows for a more real-time, accurate prediction of market

volatility, thereby providing precise risk assessments and decision support for financial market participants. Moreover, the continued

refinement of these mathematical financial methods can enhance their adaptability to evolving market environments and emerging

high-frequency data types, thereby improving forecast accuracy and practicality.

5. Epilogue
With the increasing complexity and electronicization of financial markets, the importance of using high-frequency data to predict
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market volatility has become increasingly prominent. Mathematical financial methods provide a rigorous theoretical basis and

effective calculation tools to better understand and predict market volatility. For the prediction of market volatility, the combination of

high-frequency data and mathematical financial methods provides new possibilities. High-frequency data can reveal more refined

market dynamics, while mathematical financial methods can provide estimation of model parameters and calculation of risk measures,

thereby realizing real-time and dynamic prediction of market volatility. Despite some progress, there are still many challenges in

forecasting market volatility from high-frequency data. For example, the complexity of data cleaning and processing, the real-time

update of model parameters, and the computational demands of large-scale simulations.
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