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Abstract: This study analyses ARIMA Model and Holt-Winters Smoothing. In this report, the GDP of Australia is taken 
as an example to illustrate the diff erences between these two models and to decide which model could show a better 
performance in term of forecasting. RMSE (Root Mean Square Error) is used as an indicator to compare the forecasting 
results of ARIMA Model and Holt-Winters Smoothing. After analysing, Holt-Winters Smoothing is found that could 
provide a more accurate result. This report provides people with basic ideas that how to use basic forecasting techniques 
to explore the future trends of some economic indicators. 
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1.Introduction
GDP provides a basis for the estimation of economic growth and size. It is used as a measurement of the economic 

health of a country since it gives an epitome of a country’s economy (Landefeld, Seskin & Fraumeni, 2008). In addition, 
GDP is an important factor that could infl uence decisions made by economists, policymakers, investors, and so on. 

In this report, Holt-Winters Smoothing and SARIMA model are used to predict GDP. The basic idea of Holt-
Winters Smoothing is to use the exponential smoothing method to analyze time-series data and forecast the future. 
ARIMA model is a generalization of an autoregressive moving average (ARMA) model which is wildly applied in 
diff erent subjects since this model can capture underlying patterns more than trend or seasonality. RMSE is used in this 
report to determine which model is more suitable to forecast GDP. The data used in this report is Australian quarterly 
GDP in 60 years. The data between 1959 and 2015 are used as training data and the rest are used as test data. After 
analyzing, in this report, additive Holt-Winters smoothing model is more suitable to forecast GDP because this method 
shows the lowest RMSE which is 3.2156.

2. Exploratory Data Analysis
In this report, GDP is presented on quarterly basis, and there are 228 training data in total. This part discusses the

pattern of the gross domestic product based on the plot. The trend, seasonal patterns and smoothness will be revealed 
through the moving average.

2. 1 Original data

According to the database, the data are classifi ed quarterly, so the seasonal pattern of data is 4. The Figure 2.1
shows fl uctuation during the whole period, and also increases in this period.  
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Figure 2.1. GDP between 1959 and 2015.
The log transform of GDP is shown in below Figure.  

Figure 2.2. Log GDP between 1959 and 2015.

2.1.1. Identifying trend and seasonal Patterns 
The trend is a long term upward or downward direction in the time series, and seasonal pattern is a regular 

repeating pattern that repeats in a fixed period. The data for the gross domestic product (GDP) is shown in Figure 
2.1. From the plot, it is clear that there is an overall increase in the trend, with some seasonality in it. There are 
some irregular fl uctuations from 1985 to 2000 that do not follow the regular pattern. The gradually increasing trend 
also indicates the additive relationship of the data. Its statistical properties (mean, variance) are changing over time. 
Therefore, this report needs to run some data preprocessing to get stationary data before this report applies the 
forecasting techniques. There is a visible seasonal pattern for GDP data, which is suitable for using the decomposition 
method to train the data. 2.1.2 Identifying Stationarity 

Using the Dickey-fuller Test method to identify the stationarity of the original data, this report can recognize it is 
non-stationary. The test statistic (3.8651) is larger than the critical value (2.5741) at 10% which is shown in Figure 2.3. 
In our case, the number is larger than the critical value at 10%, which means the data is non-stationary (at least 90% of 
the data). 
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Results of Dickey-Fuller Test: 

Test Statistic                   3.865121 

p-value                          1.000000 

Lags Used                      15.000000 

Number of Observations Used 212.000000 

Critical Value (1%)             -3.461578 

Critical Value (5%)             -2.875272 

Critical Value (10%)            -2.574089 

Figure 2.3. Results of Dickey-Fuller Test.

2.1.3. Decomposition method 
From the data for the gross domestic product (GDP) showed in Figure 2.4. It is clear that there is an overall 

increase in the trend, with some seasonality in it. There are some irregular fl uctuations from 1985 to 2000 that do not 
follow the regular pattern. The gradually increasing trend also indicates the additive relationship of the data. Therefore, 
this report needs to use natural logarithm to get stationary data before this report applies the forecasting techniques. 

Figu re 2.4. Original data.

3.Holt -Winters smoothing 
3.1. Methodology 

Holt–Winters smoothing is an advanced exponential smoothing method that can be applied to deal with seasonal 
and trend time series， and this method is regarded as double exponential smoothing (Gelper, Fried, & Croux, 2010). 
The basic idea of this method is to use exponential smoothing method to analyze trend, level, and seasonal components 
of past data and then forecast the future (Holt, 2004). In addition, Holt–Winters smoothing can be applied to both 
Additive seasonality and Multiplicative seasonality. 

3.1.1 Additive Holt-Winters Smoothing 
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According to Hyndman and Athanasopoulos (2018), additive Holt-Winters smoothing is used for time series whose 
seasonal variation is not changing follow the trend . The model is:

 where α ,β , and γ are weight decaying and M is seasonal frequency. 
3.1.2 Multiplicative Holt-Winters Smoothing 
Multiplicative Holt-Winters smoothing is used for seasonal variation is not constant along the trend (Hyndman & 

Athanasopoulos, 2018), and the model is: 

whe re α ,β , and γ are weight decaying and M is seasonal frequency. 
Above-mentioned models are two kinds of Holt-Winters smoothing methods used for diff erent seasonal variation. 

However, before using these models in reality, there are some initial values  and 3 parameters 
(α ,β , and γ) need be determined. According to Hyndman and Athanasopoulos (2018), fi rstly, a linear regression based 
on the data (y1, y2, …, yt) can be used to fi nd l0 and b0 and the linear regression model is =

Secondly, the minimizing SSE/MSE method can be used to select parameters (α ,β , and γ). In terms of forecasting, 
the forecasting equation of additive Holt-Winters smoothing 

The variance for interval forecasts: 
When ℎ ≤M, 

When ℎ > M, 

However, if the trends are extrapolated indefi nitely into the future, there cloud be some problems. In order to solve such 
problems, dampened trend exponential smoothing can be used. The model of damped trend exponential smoothing is: 

 

Where φ is the dampening and (0 ≤ φ ≤ 1). 
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3.2. Forecast processing and analysis 

Firstly, we use the training data to draw the plot. 

Figure 3.1. GDP from 1959 to 2015.

From Figure 3.1, it shows that although there are obvious fl uctuations between 1980 and 2000, the trend of GDP 
increases from 1960 to 2010. In addition, above plot shows that the general seasonal variation is not change follow the 
trend and the model, which suggests that Additive Holt-Winters smoothing model should be used. However, subjective 
observation does not accurate. As a result, SSE is used to select smoothing methods. 

Based on Python, SSE of additive Holt-Winters smoothing is 2480.0602 and SSE of multiplicative Holt-Winters 
smoothing is 3056.7672. The SSE of multiplicative Holt-Winters smoothing is higher than additive Holt-Winters 
smoothing. As a result, additive Holt-Winters smoothing method is used in this report. 

Secondly, original data is split into train and test, where train data is used to train and validation, and additive Holt-
Winters smoothing is used to do in-sample forecast and calculate RMSE. In this report, 10% of train data is used as 
validation data. 

Based on Python, RMSE is 3.2156. And then this RMSE is applied to compare with other models in this report to 
select which one is the suitable to do further forecast. In-sample forecast plot as follow (red line shows the results of 
forecast): 

Figure 3.2. In sample forecast.
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Above graph shows that the result of forecast is close to the true value. 
Finally, additive Holt-Winters smoothing is used to do out-of-sample forecast and then test error is calculated. 
Below chart shows the result of out-of-sample forecast, 

Figure 3.3. “Forecasts from additive Holt-Winters method”.

The test error is calculated by follow formula: 

And the test error is 197216.4868.  

3.3 Limitation 

Additive Holt-Winters smoothing method contains lt(t he level or the smoothed value), bt (the trend) and st(seasonal 
component) which is a useful method to analyse time series data. This method gives greater weight for the more recent 
observations and decays exponentially as the observations fall at an older time. Although it contains level, trend and 
seasonal 

component, it is very vulnerable to outliers and the weight for α, γ and δ. Sometimes, using this method on the 
analysis and forecast of frequently changing time series data may also lead to high RMSE.

4. Seasonal Autoregressive Integrated Moving Average (SARIMA) 
4.1 Methodology 

Autoregressive integrated moving average (ARIMA) model is a generalization of an autoregressive moving 
average (ARMA) model, which is wildly applied in statistics, econometrics and time series analysis, since ARIMA can 
capture underlying patterns more than trend or seasonality. However, ARIMA requires strong assumption on stationarity, 
which means the mean, variance and covariance do not variate over time for the given time series data. In order to use 
this method, we can transform time series into a stationary data by taking fi rst or second order of diff erencing.  

The ARIMA (p, d, q) model can be presented in the formula as 

Where  is the diff erenced data in order of d, on the right side of the equation, the part with lagged value upon 
lag p represents autoregressive model with lag p or AR(p), the rest part with lagged value upon lag q represents moving 
average model with lag q or MA(q). ARIMA is essentially the combination of AR and MA. In a special case of p = q = 
0, ARIMA turns to be a white noise process.  
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According to the special characteristic of MA and AR model, we can use ACF and PACF plot to assess time series 
stationary and fi nd the appropriate value for p and q. ACF measure the autocorrelation between lagged observations, 
while PACF is the partial autocorrelations which measures the linear correlation between lagged values by removing 
the common eff ect between two lagged values. Under the condition of stationary, ACF for MA would cut off  after lag q 
while PACF would die down exponentially. Similarly, ACF for AR would die down exponentially while PACF would 
cut off  to zero after lag p. 

However, Akaike’s Information Criterion (AIC) is also a popular method in selecting the optimal number of orders 
for an ARIMA model as AIC place a penalty parameter into the function, which helps to select the optimal order and 
simplify the model. An improved method is corrected AIC (AICc), which is similar to AIC but penalized extra order 
or parameter more heavily, thus, it often produces a simpler model than AIC. Both AIC and AICc are based on the 
assumption of normal distribution of residuals. There is also another advanced measurement model called Schwarz’s 
Bayesian Information Criterion (BIC), it penalizes the model complexity more heavily than AIC, with enough data, BIC 
is in advantage of higher probability to select the true model. 

Furthermore, in order to apply ARIMA to seasonal time series, seasonality should be considered. Therefore, this 
report uses SARIMA to analyse and forecast GDP. Seasonal ARIMA can be expressed as ARMA (p, q) (P, Q) m which 
has mathematical form of  

The backshift operator is B which can be used to show lagged observed value, 

Seasonal ARIMA shares similar component to ARIMA but add the elements of seasonal components of ARMA (P, 
Q)m. Seasonal ARIMA also requires stationarity, we can assess this by checking the ACF and PACF plot, the rational is 
same as regular ARIMA. 

4.2 Data processing  

4.2.1 Log transformation  

Figure 4.2.1. original GDP data.         Figures 4.2.2. log GDP data. 
Figure 4.2.1 shows the variation of original GDP data, which illustrates a signifi cant increasing trend and constant 

stable seasonal pattern, meanwhile the peak within each period is quite constant in the datasets. Since the original GDP 
data has large increase in the time window, we applied log transformation to stabilize the magnitude. After comparing 
the log plots with the original plots, the variability of data got smaller but seemed have become non-stationary as shown 
in fi gures 4.2.2.  
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Figure 4.2.3. ACF of log GDP.           Figure 4.3.4. PACF of log GDP.

ACF and PACF plot of log GDP are made of the log GDP data, plots are shown in Figures 4.2.3 and 4.3.4 
respectively. From Figure 4.2.3 it is noted that the log data needs transformation for it dies down extremely slowly. 

4.2.2 1-st order diff erencing 

Figure 4.2.5. 1st order diff erencing.     Figure 4.2.6. 1st order diff erencing by 4-step shift. 
Therefore, we need to apply diff erencing method until we decide on an appropriate order. The outputs of 1st order 

diff erencing for GDP and the one without seasonal patterns by 4-step diff erencing are shown as above respectively. 
Figure 4.2.5 shows that the 1st order diff erencing for log GDP is still non-stationary after the fi rst diff erencing. Then 
after diff erencing by 4-step shift, it becomes stationary based on the fi gure 4.2.6. So, d of GDP in SARIMA model is 
equal to 1 and D = 1.  

4.3 Model fi tting and Interpretation 

4.3.1 ACF & PACF 
Here, ACF and PACF plots are drawn based on the 1st order differenced data to obtain a suitable order for 

SARIMA process. The outputs are shown as below:  

Figure 4.3.1. ACF for diff erencing data.    Figure 4.3.2. PACF for diff erencing data. 
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From fi gure 4.3.1, it indicates that the data can be considered stationary after diff erencing since the ACF of this 
time series cut off  reasonably quickly. Moreover, there exists obvious seasonal pattern since lag (4) largely out of the 
confi dence interval, SARIMA model should be used. Then we could select m = 4 as the seasonal pattern is shown at lag 
(4) and D = 1 since the series has a stable seasonal pattern. From the plots above, we decided to select q = 4 or 0 from 
the ACF plot and p = 4 from the PACF plot which are out of the confi dence interval and cut off  at the next point. And P 
= 0 and Q = 1 as in PACF lag (4) < 0 and in ACF lag(4) < 0. So, the SARIMA model can be built as SARIMA (4, 1, 4) 
(0, 1, 1)4 or SARIMA (4,1, 0) (0, 1, 1)4.  

4.3.2 Model Fitting 
The training set after log transformation has been used to fi t the two models above. First, the training data has been 

split to sample training set which covers 90% and sample testing set which covers 10% of the total training data. 
The output of comparison between the two model’s predictions in the training set is shown as below. Figures 4.3.3 

and 4.3.4 shows that the prediction from SARIMA (4, 1, 4) (0, 1, 1)4 are even higher than the prediction from SARIMA 
(4, 1, 4) (0, 1, 1)4 compared with the actual GDP data. 

Figure 4.3.3. SARIMA (4,1, 4) (0, 1, 1)4.

Figure 4.3.4. SARIMA (4,1, 0) (0, 1, 1)4.
The coeffi  cients are all insignifi cant expect for ma.S.L4. The p-value of Ljung-Box for SARIMA (4, 1, 0)(0, 1, 1)4 

is less than 5% which means that we reject the null hypothesis and we can conclude that at least one of the sample auto-
correlations in the GDP data are signifi cantly diff erent to 0, while SARIMA (4, 1, 4)(0, 1, 1)4 has p-value greater than 
5%, so we may conclude that all of the sample auto-correlations in the GDP data are signifi cantly diff erent to 0. Thus, 
we may need to include more lags to SARIMA (4, 1, 0) (0, 1, 1)4 in order to solve this auto-correlation problem to make 
data stationary with better prediction performance. Both SARIMA (4, 1, 4) (0, 1, 1)4 and SARIMA (4, 1, 0) (0, 1, 1)4 
have lower than 5% p-value for Jarque-Bera test which implies that these two models may produce normal distributed 
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GDP data. Then, AIC is also implemented to select the order (p, q) of the SARIMA model. Comparing to the AIC 
score, SARIMA (4, 1, 0) (0, 1, 1)4 produces lower AIC score, it shows that SARIMA (4, 1, 0) (0, 1, 1)4 shows better 
performance in prediction and is chosen fi nally. 

Figure 4.3.5. SARIMA (4, 1, 1) (1, 1, 1)4.
After that， three other models are tested and compared in the same way as above. SARIMA (4, 1, 1) (1, 1, 1)4 

has the best performance among all, therefore the model’s parameters are selected as the fi nal model. The prediction of 
SARIMA (4, 1, 1) (1, 1, 1)4 and performance summary are represented in fi gure 4.3.5. 

4.3.3 Prediction of SARIMA 
In this way the whole training set is used to fi t the fi nal model SARIMA (4, 1, 1) (1, 1, 1)4 and made forecast about 

the time window in testing set. The result of the forecast is shown as below:  

Figure 4.3.6. Final SARIMA model with forecasting.

4.4 Limitation 

SARIMA is also one useful method to analyze many types of time series data. However, SARIMA model requires 
the observations to be stationary (Vijayakumar & Vennila, 2016) and it is the reason why this report uses the natural 
logarithm of original data to fi t the model. 

Moreover, SARIMA model cannot be applied to estimate the instantaneous relationship between two time series 
data (Chamlin, 1988). SARIMA model also requires the utilization of rather long time series to produce reliable 
parameter estimates (Vijayakumar & Vennila, 2016). 

5. Conclusion and Recommendation  
5.1. RMSE
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Model RMSE 

 HoltWinters 3.2156 

SARIMA 85.2736 

Table 6.1. Test Error.
The above table shows RMSE of diff erent models when doing in-sample forecast. It is found that the RMSE of 

Holt-Winters smoothing method is the smaller. As a result, Holt-Winters smoothing is chosen to do the out-of-sample 
forecasting and the test error is 197216.4868. 

5.2 Conclusion and Recommendation  

After checking the RMSE of the remaining 20% data, additive Holt-Winters smoothing model shows the lowest 
RMSE, which means this model is more accurate in predictions. Therefore, this report chooses the forecasting value 
of additive Holt-Winters smoothing model as the result. However, due to the data (quarterly GDP) is very fl exible, this 
model may be vulnerable to errors. If the test error between actual quarterly GDP and predicted quarterly GDP is in 
an acceptable area, this model can be proved to be useful for forecast. Although there should be many well-performed 
models which can predict more accurately, this report cannot use them for analysis and forecast due to the limited 
ability of author. Finally, this report gives the opportunity for researchers to discover and use models to solve real world 
problems. 

Reference 
1. Landefeld, J. S., Seskin, E. P., & Fraumeni, B. M. Taking the pulse of the economy: Measuring GDP  [J]. Journal of 

Economic Perspectives 2008; 22(2): 193-216. 
2. Gelper, S., Fried, R., & Croux, C. Robust forecasting with exponential and Holt–Winters smoothing [J]. Journal of 

forecasting 2010; 29(3): 285-300. 
3. Holt, C. C. Forecasting seasonals and trends by exponentially weighted moving averages [J]. International journal 

of forecasting 2004; 20(1): 5-10. 
4. Hyndman, R. J., & Athanasopoulos, G. Forecasting: principles and practice [J]. 2018. 
5. Vijayakumar, N., & Vennila, S. A comparative analysis of forecasting reservoir infl ow using ARMA model and 

Holt winters exponential smoothening technique [J]. International Jour. of Innovation in Science and Mathematics 
2016; 4(2): 85-90. 

6. Chamlin, M. B. Crime and arrests: An autoregressive integrated moving average (ARIMA) approach [J]. Journal 
of Quantitative Criminology 1988; 4(3): 247-258. 




