• Login
  • Register
  • Search

Organic geochemical characteristics and paleo-environments of Neoproterozoic Doushantuo Formation from Weng'an, Guizhou, South China

Sajjad Ali1,2, Guangli Wang1,2, Tonggang Zhang1,2, Shengbao Shi1,2, Fu Jian1,2, Xiaolin Lu1,2, Hongfei Lai1,2, Chang Rui1,2

Abstract


Phosphorite organic-rich sediments from Weng’an Doushantuo Formation preserve earliest animals and multicellular life, though it has been investigated by many researchers but in terms of biomarker analysis still need to be known. Here we have applied various specific aliphatic and aromatic biomarkers (Molecular fossils) parameters with stable carbon isotope data. The biomarker investigation of sixteen phosphoritic rocks from Weng’an Doushantuo Formation, Guizhou, South China, was carried out to identify the paleo-depositional environment, source of its organic matter and thermal maturity by using gas chromatography-mass spectrometry/ mass spectrometry (GC-MS). Particular care was taken while doing geochemical analysis in order to get rid of possible contaminations. Geochemical results indicate the source rock extracts from Weng’an Doushantuo Formation have similarity in molecular composition. All the studied samples have a lower amount of TOC, ranging from 0.07% to 0.58%. Molecular fossils revealed that the source input of organic matter was mainly from eukaryotic algae including dinoflagellates (or their ancestors) and demosponges as confirmed by steranes and terpanes. Pristane and phytane are derivative of Chlorophyll-a suggesting the availability of photosynthesis process in early ocean. Maturity based parameters suggest that the Weng’an phosphorite are highly mature, which is consistent with the thermal history of Doushantuo sediments. Isotopic compositions of δ13Csaturated and δ13Caromatic hydrocarbon fractions show the marine environment. Biomarker investigation revealed that the phosphorite rocks from Weng’an Doushantuo Formation are highly mature, experienced strongly anoxic, clay rich conditions with major contribution of eukaryotic micro-organisms.


Full Text:

PDF

Included Database


References


Blumer, M., Youngblood, W.W., 1975. Polycyclic Aromatic Hydrocarbons in Soils and Recent Sediments. Science (80-. ). 188, 53–55. https://doi.org/10.1126/science.188.4183.53

Brassell, S.., Eglinton, G., Maxwell, J.., Philp, R.., 1978. Natural background of alkanes in the aquatic environment. In: Hutzinger, L.H., van Lelyveld, O., Zoeteman, B.C.J. (Eds.). Pergamon. Oxford 69–86.

Bray, E.E., Evans, E.D., 1961. Distribution of n-paraffins as a clue to recognition of source beds. Geochim. Cosmochim. Acta 22, 2–15. https://doi.org/10.1016/0016-7037(61)90069-2

Bristow, T.F., Kennedy, M.J., Derkowski, A., Droser, M.L., Jiang, G., Creaser, R.A., 2009. Mineralogical constraints on the paleoenvironments of the Ediacaran Doushantuo Formation. Proc. Natl. Acad. Sci. 106, 13190–13195. https://doi.org/10.1073/pnas.0901080106

Brocks, J.J., 2005. Building the Biomarker Tree of Life. Rev. Mineral. Geochemistry 59, 233–258. https://doi.org/10.2138/rmg.2005.59.10

Brocks, J.J., Buick, R., Summons, R.E., Logan, G.A., 2003. A reconstruction of Archean biological diversity based on molecular fossils from the 2.78 to 2.45 billion-year-old Mount Bruce Supergroup, Hamersley Basin, Western Australia. Geochim. Cosmochim. Acta 67, 4321–4335. https://doi.org/10.1016/S0016-7037(03)00209-6

Brocks, J.J., Logan, G.A., Buick, R., Summons, R.E., 1999. Archean molecular fossils and the early rise of eukaryotes. Science (80-. ). 285, 1033–1036. https://doi.org/10.1126/science.285.5430.1033

Brocks, J.J., Love, G.D., Summons, R.E., Knoll, A.H., Logan, G.A., Bowden, S.A., 2005. Biomarker evidence for green and purple sulphur bacteria in a stratified Palaeoproterozoic sea. Nature 437, 866–870. https://doi.org/10.1038/nature04068

Buchardt, B., Clausen, J., Thomsen, E., 1986. Carbon isotope composition of Lower Palaeozoic kerogen : Effects of maturation 10, 127–134.

Chakhmakhchev, A., Suzuki, N., 1995. Saturate biomarkers and aromatic sulfur compounds in oils and condensates from different source rock lithologies of Kazakhstan, Japan and Russia. Org. Geochem. 23, 289–299. https://doi.org/10.1016/0146-6380(95)00018-A

Craig, J., Biffi, U., Galimberti, R.F., Ghori, K.A.R., Gorter, J.D., Hakhoo, N., Le Heron, D.P., Thurow, J., Vecoli, M., 2013. The palaeobiology and geochemistry of Precambrian hydrocarbon source rocks. Mar. Pet. Geol. 40, 1–47. https://doi.org/10.1016/j.marpetgeo.2012.09.011

Cunningham, J.A., Vargas, K., Yin, Z., Bengtson, S., Donoghue, P.C.J., 2017. The Weng’an Biota (Doushantuo Formation): an Ediacaran window on soft-bodied and multicellular microorganisms. J. Geol. Soc. London. 174, 793–802. https://doi.org/10.1144/jgs2016-142

Didyk, B.., Simoneit, B.R.., Brassell, S.., Eglinton, G., 1978. Organic geochemical indicators of palaeoenvironmental conditions of sedimentation. Nature 272, 216–222.

Ebukanson, E.., Kinghorn, R.R.., 1986. Maturity of organic matter in the Jurassic of southern England and its relation to the burial history of the sediments. J. Pet. Geol 93, 259–280.

Eglinton, G., Hamilton, R.., 1967. Leaf epicuticular waxes. Science (80-. ). 156, 1322–1344.

Espitalié, J., Deroo, G., Marquis, F., 1985. La pyrolyse Rock-Eval et ses applications. Rev. Inst. Fr. Pétrol 40, 563–579.

French, K.L., Hallmann, C., Hope, J.M., Schoon, P.L., Zumberge, J.A., Hoshino, Y., Peters, C.A., George, S.C., Love, G.D., Brocks, J.J., Buick, R., Summons, R.E., 2015. Reappraisal of hydrocarbon biomarkers in Archean rocks. Proc. Natl. Acad. Sci. 112, 5915–5920. https://doi.org/10.1073/pnas.1419563112

Goodwin, N.S., Mann, A.L., Patience, R.L., 1988. Structure and significance of C3o 4-methyl steranes in lacustrine shales and oils 12, 495–506.

Grice, K., Nabbefeld, B., Maslen, E., 2007. Source and significance of selected polycyclic aromatic hydrocarbons in sediments (Hovea-3 well, Perth Basin, Western Australia) spanning the Permian-Triassic boundary. Org. Geochem. 38, 1795–1803. https://doi.org/10.1016/j.orggeochem.2007.07.001

Guo, Q., Strauss, H., Zhu, M., Zhang, J., Yang, X., Lu, M., Zhao, F., 2013. High resolution organic carbon isotope stratigraphy from a slope to basinal setting on the Yangtze Platform, South China: Implications for the Ediacaran-Cambrian transition. Precambrian Res. 225, 209–217. https://doi.org/10.1016/j.precamres.2011.10.003

Han, T., Fan, H., 2015. Dynamic evolution of the Ediacaran ocean across the Doushantuo. Chem. Geol. 417, 261–272. https://doi.org/10.1016/j.chemgeo.2015.09.021

Hanson, A.D., Zhang, S.C., Moldowan, J.M., Liang, D.G., Zhang, B.M., 2000. Molecular organic geochemistry of the Tarim basin, Northwest China. Am. Assoc. Pet. Geol. Bull. 84, 1109–1128. https://doi.org/10.1306/A9673C52-1738-11D7-8645000102C1865D

Hawkins, A.D., Xiao, S., Jiang, G., Wang, X., Shi, X., 2017. New biostratigraphic and chemostratigraphic data from the Ediacaran Doushantuo Formation in intra-shelf and upper slope facies of the Yangtze platform: Implications for biozonation of acanthomorphic acritarchs in South China. Precambrian Res. 300, 28–39. https://doi.org/10.1016/j.precamres.2017.08.004

Huang, W.Y., Meinschein, W.G., 1979. Sterols as ecological indicators. Geochim. Cosmochim. Acta 43, 739–745. https://doi.org/10.1016/0016-7037(79)90257-6

Hughes, W.B., Holba, A.G., Dzou, L.I.P., 1995. The ratios of dibenzothiophene to phenanthrene and pristane to phytane as indicators of depositional environment and lithology of petroleum source rocks. Geochim. Cosmochim. Acta 59, 3581–3598. https://doi.org/10.1016/0016-7037(95)00225-O

Jiang, G., Shi, X., Zhang, S., Wang, Y., Xiao, S., 2011. Stratigraphy and paleogeography of the Ediacaran Doushantuo Formation (ca. 635e551 Ma) in South China. Gondwana Res 19, 831–849.

Kelly, A.E., Love, G.D., Zumberge, J.E., Summons, R.E., 2011. Hydrocarbon biomarkers of Neoproterozoic to Lower Cambrian oils from eastern Siberia. Org. Geochem. 42, 640–654. https://doi.org/10.1016/j.orggeochem.2011.03.028

Knoll, A.., Hayes, J.., Kaufman, A.., Swett, K., Lambert, I.., 1986. Secular variation in carbon isotope ratios from Upper Proterozoic successions of Svalbard and East Greenland. Nature 321, 832–838.

Knoll, A.H., 1994. Proterozoic and Early Cambrian protists: Evidence for accelerating evolutionary tempo. Proc. Natl. Acad. USA 91, 6743–6750.

Kodner, R.B., Pearson, A., Summons, R.E., Knoll, A.H., 2008. Sterols in red and green algae: Quantification, phylogeny, and relevance for the interpretation of geologic steranes. Geobiology 6, 411–420. https://doi.org/10.1111/j.1472-4669.2008.00167.x

Kvalheim, O.M., Christy, A.A., Telnæs, N., Bjørseth, A., 1987. Maturity determination of organic matter in coals using the methylphenanthrene distribution. Geochim. Cosmochim. Acta 51, 1883–1888. https://doi.org/10.1016/0016-7037(87)90179-7

Li, C., Peng, P., Sheng, G., Fu, J., Yan, Y., 2003. A molecular and isotopic geochemical study of Meso- to Neoproterozoic (1.73-0.85 Ga) sediments from the Jixian section, Yanshan Basin, North China. Precambrian Res. 125, 337–356. https://doi.org/10.1016/S0301-9268(03)00111-6

Li, M., Wang, T., Wang, C., Zhang, W., 2006. Molecular composition and indigenity of organic matter in Late Neoproterozoic sedimentary rocks from the Yangtze region, South China. Chinese J. Geochemistry 25. https://doi.org/10.1007/s11631-006-0318-2

Lipps, J.., 1993. Fossil Prokaryotes and Protists. Blackwell Sci. Publ. Bost. 155–167.

Love, G.., Grosjean, E., Stalvies, C., Fike, D.., Grotzinger, J.., Bradley, A.., Kelly, A.., Bhatia, M., Meredith, W., W., Snape, C.., Bowring, S.., Condon, D.., Summons, R.., 2009. Fossil steroids record the appearance of Demospongiae during the Cryogenian period. Nature 457.

Meert, J.G., Lieberman, B.S., 2008. The Neoproterozoic assembly of Gondwana and its relationship to the Ediacaran-Cambrian radiation. Gondwana Res. 14, 5–21. https://doi.org/10.1016/j.gr.2007.06.007

Mi, W.T., Chen, A.Q., 2014. Organic geochemistry of the fossil-bearing phosphorites from neoproterozoic Doushantuo formation at Weng’an, South China. 3rd Int. Conf. Energy Environ. Prot. ICEEP 2014 962–965, 156–159. https://doi.org/10.4028/www.scientific.net/AMR.962-965.156

Moldowan, J.., Jacobson, S.., Dahl, J., 2001. Molecular fossils demonstrate Precambrian origin of dinoflagellates. In: Zhuravlev, A., Riding, R. (Eds.), Ecology of the Cambrian Radiation. Columbia Univ. Press. New York 474–493.

Murray, A.., Boreham, C.., 1992. Organic Geochemistry in Petroleum Exploration. Australian Geological Survey Organization. Canberra 230.

Ourisson, G., Albrecht, P., Rohmer, M., 1982. Predictive microbial biochemistry - from molecular fossils to procaryotic membranes. Trends Biochem. Sci. 7, 236–239. https://doi.org/10.1016/0968-0004(82)90028-7

Ourisson, G., Albrecht, P., Rohmer, M., 1979. The Hopanoids: palaeochemistry and biochemistry of a group of natural products. Pure Appl. Chem. 51, 709–729. https://doi.org/10.1351/pac197951040709

Peters, K.., Moldowan, J.., 1993. The Biomarker Guide: Interpreting Molecular Fossils in Petroleum and Ancient Sediments. Prentice-Hall, Inc, Englewood Cliffs, New Jersey.

Peters, K.E. (Kenneth E., Walters, C.C. (Clifford C.., Moldowan, J.M. (J. M., 2005. The biomarker guide. Cambridge University Press.

Pratt, L.M., Summons, R.E., Hieshima, G.B., 1991. Sterane and triterpane biomarkers in the Precambrian Nonesuch Formation, North American Midcontinent Rift. Geochim. Cosmochim. Acta 55, 911–916. https://doi.org/10.1016/0016-7037(91)90351-5

Radke, M., 1988. Application of aromatic compounds as maturity indicators in source rocks and crude oils. Mar. Pet. Geol. 5, 224–236. https://doi.org/10.1016/0264-8172(88)90003-7

Radke, M., 1987. Organic geochemistry of aromatic hydrocarbons. In: Brooks, J., Welte, D., (Eds.). Adv. Pet. Geochemistry 2, 141–207.

Radke, M., Welte, D.., 1983. The methylphenanthrene index (MPI): a maturity parameter based on aromatic hydrocarbons. In: Bjorøy, M. et al. (Eds.). Adv. Org. Geochemistry. Wiley, Chichester 224–237.

Radke, M., Welte, D.H., Willsch, H., 1986. Maturity parameters based on aromatic hydrocarbons: Influence of the organic matter type. Org. Geochem. 10, 51–63. https://doi.org/10.1016/0146-6380(86)90008-2

Radke, M., Welte, D.H., Willsch, H., 1982. Geochemical study on a well in the Western Canada Basin: relation of the aromatic distribution pattern to maturity of organic matter. Geochim. Cosmochim. Acta 46, 1–10. https://doi.org/10.1016/0016-7037(82)90285-X

Rontani, J.F., Volkman, J.K., 2003. Phytol degradation products as biogeochemical tracers in aquatic environments. Org. Geochem. 34, 1–35. https://doi.org/10.1016/S0146-6380(02)00185-7

Rothman, D.H., Hayes, J.M., Summons, R.E., 2003. Dynamics of the Neoproterozoic carbon cycle. Proc. Natl. Acad. USA 100, 8124–8129.

Scalan, E.S., Smith, J.E., 1970. An improved measure of the odd-even predominance in the normal alkanes of sediment extracts and petroleum. Geochim. Cosmochim. Acta 34, 611–620. https://doi.org/10.1016/0016-7037(70)90019-0

Seifert, W.K., Moldowan, J.M., 1978. Applications of steranes, terpanes and monoaromatics. Geochim. Cosmochim. Acta 42, 77–95. https://doi.org/10.1016/0016-7037(78)90219-3

Sherman, L.S., Waldbauer, J.R., Summons, R.E., 2007. Improved methods for isolating and validating indigenous biomarkers in Precambrian rocks 38, 1987–2000. https://doi.org/10.1016/j.orggeochem.2007.08.012

Sofer, Z., 1984. Stable carbon isotope compositions of crude oils: Application to source depositional environments and petroleum alteration. Am. Assoc. Pet. Geol. Bull 68, 31–49.

Sofer, Z., 1980. Preparation of Carbon Dioxide for Stable Carbon Isotope Analysis of Petroleum Fractions. Anal. Chem. 52, 1389–1391. https://doi.org/10.1021/ac50058a063

Summons, R.., Walter, M.., 1990. Molecular fossils and micro- fossils of prokaryotes and protists from Proterozoic sediments. Am. J. Sci 290-A, 212–244.

Suzuki, N., Yoshikazu, S., Koga, O., 1993. Norcholestane in Miocene Onnagawa siliceous sedi- ments, Japan. Geochim. Cosmochim. Acta 57, 4539–4545.

Talyzina, N.M., Moldowan, J.M., Johannisson, A., Fago, F.J., 2000. A ffi nities of Early Cambrian acritarchs studied by using microscopy , fluorescence flow cytometry and biomarkers 108, 37–53.

Tao, S., Wang, C., Du, J., Liu, L., Chen, Z., 2015. Geochemical application of tricyclic and tetracyclic terpanes biomarkers in crude oils of NW China. Mar. Pet. Geol. 67, 460–467. https://doi.org/10.1016/j.marpetgeo.2015.05.030

ten Haven, H.L., de Leeuw, J.W., Sinninghe Damsté, J.S., Schenck, P.A., Palmer, S.E., Zumberge, J.E., 1988. Application of biological markers in the recognition of palaeohypersaline environments. Geol. Soc. London, Spec. Publ. 40, 123–130. https://doi.org/10.1144/GSL.SP.1988.040.01.11

Tucker, M.., 1986. Carbon isotope excursions in Precambrian/ Cambrian boundary beds, Morocco. Nature 319, 48–50.

Volkman, J.., 1986. A review of sterol biomarkers for marine and terrigenous organic matter. Org. Geochem 9, 83–89.

Wang, G., Chang, X., Wang, T.G., Simoneit, B.R.T., 2015. Pregnanes as molecular indicators for depositional environments of sediments and petroleum source rocks. Org. Geochem. 78, 110–120. https://doi.org/10.1016/j.orggeochem.2014.11.004

Wang, N., Li, M., Hong, H., Song, D., Tian, X., Liu, P., Fang, R., Chen, G., Wang, M., 2019. Biological sources of sedimentary organic matter in Neoproterozoic–Lower Cambrian shales in the Sichuan Basin (SW China): Evidence from biomarkers and microfossils. Palaeogeogr. Palaeoclimatol. Palaeoecol. 516, 342–353. https://doi.org/10.1016/J.PALAEO.2018.12.012

Wang, T.G., Li, M., Wang, C., Wang, G., Zhang, W., Shi, Q., Zhu, L., 2008. Organic molecular evidence in the Late Neoproterozoic Tillites for a palaeo-oceanic environment during the snowball Earth era in the Yangtze region, southern China. Precambrian Res. 162, 317–326. https://doi.org/10.1016/j.precamres.2007.09.009

Xiao, S., Knoll, A.H., 2000. Phosphatized animal embryos from the Neoproterozoic Doushantuo Formation at Weng’an, Guizhou, South China. J. Paleontol. 74, 767–788. https://doi.org/10.1017/S002233600003300X

Xiao, S., Zhang, Y., Knoll, A.H., 1998. Three-dimensional preservation of algae and animal embryos in a neoproterozoic phosphorite. Nature 391, 553–558. https://doi.org/10.1038/35318

Xin, H., Jiang, S., Yang, J., Wu, H., Pi, D., 2016. Rare earth element geochemistry of phosphatic rocks in Neoproterozoic Ediacaran Doushantuo Formation in Hushan Section from the Yangtze Gorges Area, South China. J. Earth Sci. 27, 204–210. https://doi.org/10.1007/s12583-015-0653-5

Zhang, S., Moldowan, J.., Li, M., Bian, L., Zhang, B., Wang, F., 2002. The abnormal distribution of the molecular fossils in the Pre-Cambrian and Cambrian: its biological significance. Sci. China Ser. D Earth Sci 45, 193–200.

Zhang, X., Liu, W., Zhao, Y., 2008. Cambrian Burgess Shale-type Lagerstätten in South China : Distribution and significance 14, 255–262. https://doi.org/10.1016/j.gr.2007.06.008

Zhou, C., Chen, Z., 2004. New constraints on the ages of Neoproterozoic glaciations in south China 437–440. https://doi.org/10.1130/G20286.1




DOI: http://dx.doi.org/10.18686/me.v0i0.1388

Refbacks