Page Header

Atmosphere C 0 2 increased concentration against lush membrane sponge stay

Hongwen Liu


under lab conditions , studied the atmosphere CO2 effect of elevated concentrations on the filtration function of the lowest-equal multicellular animal sponge . in mock atmosphere CO2 Elevated concentrations of ecosystems , review CO2 concentration for 387, , 750, 1000 mg/l under the environment , Lush film Sponge Hy-meniacidonperlevis Stop sterilization of total organic carbon in seawater ( TOC) Capabilities . results show : in impersonation CO 2 concentration is 387 , ,

750, 1000 mg/l under the condition of , Lush film sponge in H Clear seawater inside TOC The efficiency of IS 8% ,67.6% , 50.0% and 15.4%, in the 24h to TOC The average drag retention rate for is (1.90±0.20 , ( 2.13±0.06 , ( 1.69±0.08 , ( 0.43± 0.11 mgkh-g Sponge ), The average purge rate is ( 0.025±0.002 , ( 0.033±0.001 , ( 0.019±0.001 , ( 0.004±

0.001 mlkh.g sponge ), See , Atmosphere CO2 concentration from approximately 387 mg/l elevated to mg/l , promotes lush film sponges prevent seawater from being in the sea TOC Ability , When the concentration is elevated to 750 mg/l , suppresses the lush membrane sponge to stay TOC Capabilities , When the concentration is further elevation to 1000 mg/l , The causes the lush membrane sponge to almost lose its resistance to the seawater. TOC Capabilities . This study can be used for atmospheric 匚 ㊀: concentration The elevation of the effect of the sponge filtration function of intertidal zone and its possible ecological problems in nearshore waters .


Sponge ; Atmosphere CO2 concentration ; Total organic carbon ( TOC)

Full Text:



IPCC. Climate Change 2007 [R]. Cambridge-cambridge University Press, 2007.

Hoegh G O, Bruno J F. The impact of climate change on the world ' s marine ecosystems J]. science,2010,328 : 1523-1528.

Harley C D G, Randall H A, Hultgren K M, et al. The impacts of climate change in coastal marine systems [J]. Ecology Letters, 2006,9 (2) :228-241.

feely R A, Sabine c L, Lee K, et al Impact of anthropogenic C 0 12>2 on the CaC 0 3 System in the Oceans J]. Science, 2004,305:362-366.

Rockstrom J, Steffen W, Noone K, et al. A safe operating spaces for humanity j|. nature,2009,461:472-475.

Byrne m, soars N A, Ho M, et al fertilization in a suite of coastal marine invertebrates F Rom SE Australia is robust to near-future ocean warming and acidification [J]. Marine Biology, 157 (9):2061-2069.

brennand H S, soars N, Dworjanyn s, et al Impact of ocean warming and ocean On larval development and calcifi-cation into the sea urchin tripneustes gratilla J]. PLoS One, 2010,5

(6): 1-7.

Watson S A, Southgate p C, Tyler p A, et al. Early Larval development of the Sydney rock oyster saccostrea glom-erata Under nearfuture predictions of CO2 -driven ocean acidification J]. Journal of Shellfish research,2009,28 (3) :431-437.

He Shengyi, Lin, , He Maoxian, etc. . Ocean acidification to the mare's mother Bell Embryo and early effects of stage larva development J. Ecology Magazine , 2011,30 (4): 747-751.

munday P L, Dixsona D, Donelsona J M, et al. Ocean acidification impairs olfactory discrimi Nation and homing ability of a marine fish J]. Proceedings of the national Academy of Sciences of United States of america,2009,106 (6): 1848-1852.

nicholss S, worheide G. sponges:new views of the old animals [J]. Integrative and Comparative biology,2005,45 (2) :333-334.

Liu Ruiyu . China Marine Life Directory [M]. Beijing : Science Press , 2008.

Rutzler K. Associations between Caribbean sponges and photosynthetic organisms [M]//new perspectives in sponge Biology. Washington D C! Smithsonian Institution Press, 1990 :455-466.

Yahel G, Sharp J H, Marie D, et al. In situ feeding and elementRemoval in the symbiont-bearing sponge Theonel-la swinhoei : Bulk DOC is the major source for carbon J]. Limnology and oceanog-raphy,2003,48 (1): 141-149.

Fu w T, Wu Y C, Zhang W, et al. efficient bioremediation of total organic carbon (TOC) in integrated aquaculture System by Marine sponge hymeniacidon perleve J. Biotechnology and BIOENGI-NEERING,2007,97 (6): 1387-1397.

Fu W T, Sun L M, Zhang W, et al potential of the marine sponge Hymeniacidon perleve As a bioremediator of pathogenic bacteria in integrated aquaculture ecosystems J]. Biotechnology and bioen-gineering,2006,93 (6): 1112-1122.

late Zhang Wei, , Jin Mifang, etc. . excess water in lush membrane sponge-feeding ponds Research on bait J. Ma-rine Environment Science , 2006,25 (3): 29-32.

Blunt J W, Copp B R, Munro M H, et al. Marine Natural Products J. Natural Product reports,2010,27 (2): 165-237.

late Liu Jia, , Zhang Julin, etc. . Atmosphere CO 2 increased concentration on large seaweed holes effects of Ulva growth and pigment content J]. Journal of Dalian Ocean University , 2013 (5) :481-486.

Coughlan J. The estimation of filtering rate from clearance of suspensions J] . Marine biology,1969, 2:356-358.

Simpson T L. The cell biology of sponges [M]. New york! Spring-er, 1984.

vacelet J. La Place des spongiaires dans les systemes trophiques marins M]//biologie des Spo Ngiaires. Par-is:editions du CNRS, 1979 :259-270.

officer C B, Smayda T J, Mann R. Benthic filter feeding:a Natural eutrophication control J]. Marine Ecology Pro-gress Series, 1982, 9:203-210.

gili J M, Coma R. Benthic suspension feeders:their Paramount role in Litteroal marine food we BS J. Tree, 1998,13:316-321.

ribes m. Sponges and ascidians control removal of particulate organic nitrogen from coral REE F Water J]. Lim-nology and oceanog-RAPHY,2005,50 (5): 1480-1489.

late Zhang Julin, , Cao Shuqing, , etc. . " sea cucumber - Sponge - Large Seaweed Loop culture technology J. Aquatic Science , 2013,32:559-566.

Zhang X C, Zhang W, Xue L Y, et al bioremediatio N of bacteria pollution using the marine sponge Hymeni-acidon Perlevis In the in-Tensive mariculture water System of Turbot Scophthalmus Maximus J]. Biotechnology and bioengineering,2010,105 (1): The-68.

Liu Hongwen, Xu Hui, , pay late Tao . Lush membrane sponges filter out pathogenic bacteria from natural sea-water Research J. Environmental Science and technology , 2013,36 (12M): 32-36.

Zhao Guanyu, Deng, Chisunyu , etc . Two species of Yellow Sea-band sponge elements and Amino acid compo-nent Analysis J. Marine Science , 2004,28 (3): 27-31.

Reiswig H M. In situ pumping activities of tropical demospongiae J. Marine biology,1971,9:38-50.

Reiswig H M. Water Transport, respiration and energetics of three Tropical marine Sponges J. Journal of experi-mental Marine biology and Ecology, 1974,14!231-249.

Reiswig H m. Particle feeding in natural populations of three MArine demosponges J]. The biological bulletin, 1971,141 : 568- 591.



  • There are currently no refbacks.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.