• Login
  • Register
  • Search

Interactions between the Earth Sphere and its constraint on the pro-gress of Anoxic-oxic in the Cretaceous Ocean

Zhenguo ZHANG

Abstract


The Cretaceous is an important period in which occurred many events geological the especially Noxic Events) characterized by black shales, and theoxic process characterized by corbs (Cretaceous oceanic Red beds). This paper describes the causative mechanism which explains how the oceanic environment changed from anoxic to oxic in Cre Taceous. Two typical events show different results that caused by interactionsoftheearthspheres. Here we are propose that rise of atmospheric CO2 occurred because the enhanced Submarine Volcanism-was abruptly and permanently diminished during the Cretaceous. The Cretaceous large-scale submarine volcanism caused the concentration of CO2 b20>. The releasing of the inner energy of the lithosphere and thedistribution Oflandwhich caused the increasing of atmospheric Temperature. This change presented the same trend as the oceanic water temperature, and caused the decreasing of O<b20 >2 concentration in the Cretaceous ocean, and then the oaes occurred. The lithosphere produced volume of lava in the upper Oceanic, Crustwhich contained Fe in the seafloor. When thehydrothermal fluids alteration of oceanic crust and seawater/basalt interactions (including microbes alteratio N of submarine basaltic glass), the element Fe dissolved in seawater. Iron is a micronutrient essential for the synthesis of enzymes required for photosynthesis in oceanic environment, it Coul D Spur phytoplankton growth rapidly. The photosynthesis of phytoplankton which can consume carbon dioxide is in much of the world ' s oceans, wherever they I n atmosphere or in ocean. This process could produce equal oxygen. And then, the oxic environment characterized by red sediment which are rich in Fe3+ appeared. The data show rhythm of the anoxic and oxic from South Tibet and DSDP/ODP section, which the anoxic is often accompanied B Y the occurrence of oxygen rich environment. Undoubtedly, the anoxic andoxic in the Cretaceous Ocean were controlled by the mutually dependent of the Earth s Ystem which included lithosphere, hydrosphere, atmosphere and biosphere. An important conclusion of this study is that the black shalesand the oceanic red beds are caused by the same reason LED different results. The anoxic and oxic in the Cretaceous Ocean were caused by volcanic activities, but they were of different causative Nisms. The former was based on physical and chemical process, while the latter involved more complicated Process.

Keywords


Cretaceous; Anoxic andoxic; Earthspheres; Interactions

Full Text:

PDF

Included Database


References


Arthur M. A. 1979. North Atlantic Cretaceous black shales:the record at site 398 and a brief comparison with other occurrences [M]. Initial reports of the Deep Sea drilling Project, 47:719-753

arvidson R S, Mackenzie F T, Guidry M W. 2013. Geologic history of Seawater:a MAGic approach to carbon chemistry and ocean. Chemical geology, 362:287-304

asimow P D, Hirschmann m M, Stolper E M. 2001. Calculation of peridotite partial melting from thermodynamic models of minerals, MELTS:IV. Adiabatic decompression, the composition, mean properties of Mid-Ocean ridge basalts [J]. Petrology, 42:963-998

Barron E J. 1983.A warm equable cretaceoue:the nature of the problem [j]. Earth-science Review, 19 (4): 305-338.

Benzerara K, Menguy N, Banerjee n R, Tolek T, Guyot F. 2007. Alteration of submarine basaltic glass from the On-tong Java plateau:a STXM and TEM study [J]. Earth and Planetary Science Letters, 260:187-200.

Berner RA, beerling D J, Dudley R, Jennifer M R, Richardaw. 2003. Phanerozoic atmospheric oxygen [J]. Annual Review of Earth Planetary Science. 31:105-34.

Berner R A, Canfield D E. 1989. A New model for atmospheric oxygen over Phanerozoic time[j]. American Journal of Science, 289 (4): 333-61.

Berner R A, Lasaga a C, Garrels R M. 1983. The carbonate-silicate geochemical cycle and their effect on atmos-pheric carbon dioxide over the past million [J]. American Journal of Science, 283:641-683.

Berner R A. 1990. Atmospheric carbon dioxide levels over Phanerozoic time [J]. Science, 249 (4975): 1382-1386.

Bernerra. 1992.palaeo-co2 and Climate [J]. Nature, 358:114.

Berner R A. 1999.Atmospheric CO 2 Over phanerozoic time [J]. Proceeding of the national Academy Sciences of the USA: 10955-10957.

Bi Siwen. 2003. Earth System Science-the Frontier of Earth science and scientific basis of the sustainable devel-opment Strategy in T HeSt Century[j]. Geological Bulletin of Chinese (8): 601-611 (in Chinese with Chinese ab-stract).

Blank J G, Delaney J R, Marsais D J. 1993. The concentration isotopic composition of carbon in basaltic glasses from the Juan de Fuca ridge[j]. Geochimicaetcosmochimicaacta, 57 (4): 875-887.

Boucot A J, Gray J. 2001. A Critique of Phanerozoic climatic models involving changesin the CO2 conten T of the atmosphere [J]. Earth-science Reviews (1-4): 1-159.

Broecker W. 1991.The Ocean Conveyor [J]. Oceanography, 4:79-89.

Bruce W F. 1996. Phytoplankton bloom on iron rations [J]. Nature, 383:475-476.

Brumsack H J. 1980.Geochemistry of Cretaceous Black shales from the Atlantic Pcean (DSDP legs, 41). Chemical Geology, 3:1-2, 5.

Campbell I H, Kerr A C. 2007. The plume debate:testing the plume theory [J]. Chemical geology,241 (3/4): 149-152.

Cerling T E. 1991. Carbon dioxide in the atmosphere:evidence from Cenozoic and Mesozoic paleosols [J]. American Journal of

Science, 291 (4): 377-400.

Cerling T E. Solomon D K, Quade J, John R B. 1991. On the isotopic composition of carbon in soil carbon diox-ide [J]. Geochimica et cosmochimicaacta, 55 (11): 3403-3405.

Chen J, Devey C, Fischer c. 2005. Ocean-abyss of Time [M]. Earth Sciences for society Foundation, Leiden, the netherlands.1-16.

Christopher l S, Richard A F, Nicolas G, Robert M K, Kitack L, John l B, Rik W, Wong C S, Douglas W R, Bronte T, Frank J M, Peng T H, Alexander K, Tsueno Ono, Aida F R. 2004. The oceanic sink for anthropogenic CO2 [J]. Science, 305:367-371.

Christopher L S, Toste T. 2010. Estimation of anthropogenic CO2 inventories in the Ocean [J]. Annual Review Marine Science, 2:175-198.

Christopher R. Earth history.paleomap Project cretaceous[]. http:// www.scotese.com/earth.htm .

Coale K H, Fitzwater s E, Gordon R M, Kenneth s J, Richard T B. 1996. Control of Community growth and export production by upwelled iron in Equatorial Pacific [J]. Nature, 379:621-624.

Coffin M F, Eldholm O. 1994. Large igneous provinces:crustal structure, dimensions, and external consequences [J]. Review Geophys, 32:1-36.

Courtillot V E, Renne P R. 2003. On the age of flood basalt events [J]. Comptesrendus Geoscience, 335 (1): 113-140

Dahl T W, Emma U H, Ariel D A, David P G, Bond G, Benjamin C, Gill H. 2010. Devonian rise in atmospheric oxygen correlated to the radiations of terrestrial plants and large predatory fish [J]. Proceedings of the national Academy of the United States Ofamerica, 107 (42): 17911-17915.

Debaar H J, de Jong J T. 2001. Distributions, sources and sinks of iron in Seawater[c]//turner D R, Hunter K A (eds.). Biogeochemistry of Fe in seawater. Scor/iupac. Chichester, 123-253.

Dondra V B, Tyler H C, Ralph c T, Geoffrey J S, Kenneth W B. 2013. Coastal iron and nitrate distributions during the "Spring and summer upwelling season in the", California current UPW Elling Regime[j]. Continental Shelf, 66:58-72.

Duce R A, Tindale N W. 1991. Atmospheric transport of iron and its deposition in the ocean[j]. Limnology and Oceanography, 36 (8): 1715-1726.

Edward R A, Cliff S L, Philip W B, Samantha J L, Maria T M, Andrew R bowie.2000. Importance of stirring in the development of a iron-fertilized phytoplankton bloom[j]. Nature, 407:727-730.

Falkowski p, Scholes R J, Boyle E, Canadell J, Canfield D, Elser J, Gruber N, Hibbard K, Hogberg p, Linder S, Mackenzie F T, Moore B, Pedersen T, Rosenthal Y, Seitzinger S, Smetacek V, Steffen W. 2000. The global carbon cycle:a test of our knowledge to Earth as a system [J]. Science, 290 (5490): 291-296.

Fisk M R, Giovannoni S J, Thorseth I H. 1998.The extent of microbial life in the volcanic crust of the ocean [j]. Science, 281:978-980.

Furnes h, Staudigel H. 1999. Biological mediation of basalt glass alteration in the ocean crust:how Deep is the deep biosphere? [J]. Earth and Planetary Science Letters, 166 (3-4): 97-103.

Geider R J, LaRoche J. 1994. The role of iron in phytoplankton photosynthesis, and the potential for iron-limitation of primary productivity in the SE A [J]. Photosynthesis, 39:275-301.

George W L, Wu J F. 1997. What controls dissolved iron concentrations in the world ocean?-a Com-ment[j]. Marine chemistry, 57 (3/4): 137-161.

Gordon R M, Coale K H, Johnson K S. 1997. Iron distributions in the equatorial pacific:implications for new Production[j]. Limnology

and oceanography, 42 (3): 419-431.

Gregory J. 2001. A 300-million-year record of atmospheric carbon dioxide from fossil plant cuticles[j]. Nature, 411:287-290.

Guo Zhengtang, Wu haibin. On the "Solid Earth" and Earth system Science[j]. Advances in the Earth Science, A (5): 699-705 (in Chinese with Chinese abstract).

Guy C, Daux V, Schott J. 1999. Behaviour of rare earth elements during seawater/basalt interactions in the Muru-roa massif [J]. Chemical Geology, 158 (1/2): 21-35.

Hansell D A, Carlson C. 1998. Deep-ocean gradients in the concentration of dissolved organic carbon [J]. Science, 395 (6699): 263-266.

Hein J W, de Baar, Jeroen T M, de Jong, Rob F N, Klaas R T, Maria A L, Bathmann U, Michiel R L, Juri S. 1999. Low dissolved Fe and the absence of diatom blooms in remote Pacific waters of the southern Ocean[j]. Marine Chemistry, 66 (1/2): 1-34.

Hollander D J, McKenzie J. 1991. Carbon dioxide control on Carbon-isotope fractionation during aqueous pho-tosynthesis:a paleo- pc 0 2 Barometer [J ]. Geology (9): 929-32.

Hanjing, Yu Yong, Zhengxiuzhen, Liu Peixun, Tao We. 2003. Global volcano Distribution:pattern and varia-tion. Earth Science Frontiers, 10:11-16 (in Chinese with Chinese abstract).

Hutchins D A, Hare C E, Weaver R S, Zhang Y, Firme g F, DiTullio g R, Alm M B, Riseman S F, Maucher J m, Geesey M E, trick C G, Smith G J, Rue E L, Conn J, Bruland K. 2002. Phytoplankton Fe limitation in the Hum-boldt current and Peru upwelling[j]. Limnology and Oceanography, 47:997-1011.

Hutchins D A, Wang W X, Fisher N S. 1995. Copepod grazing and the biogeochemical fate of Diatom Iron [J]. Limnology and Oceanography, 40:989-994.

Ingle S, Coffin M F. 2004.Impact origin for the greater Ontong Java Plateau? [J]. Earth and Planetary Science Let-ters, 218 (1/2): 123-134.

Jeffrey B G, Nancy M A, Robert D, Carl G. 1995. Implications of the late Palaeozoic oxygen pulse for physiology and evolution[j].

Jeffrey C A, Pilar M. 2000.On the role of microbes in the alteration of submarine basaltic glass:a TEM study [J]. Earth and Planetary

Science Letters, 181 (3): 301-313.

Jenkyns H C. 2010. Geochemistry of oceanic anoxic events [J]. Geochemistry, Geophysics, geosystems,11:1-30.

Jickells T D. 1999. The inputs of dust derived elements to Sargasso Sea:a [J]. Marine chemistry, 68 (1-2): 5-14.

Jickells T, Spokes L J. 2001. Atmospheric iron inputs to the oceans. In:turner, D.R, Hunter, k.a. (Eds.), the bioge-ochemistry of Iron in seawater. Scor-iupac, Baltimore, 85-121.

Jin Xingchun, Zhou Zuyi, Wang pinxian.1995. Ocean Drilling and Earth science in the [M]. Shanghai:tongji University press,248-251 (in Chinese with Chinese abstract).

John P, Hayes J M. 1990. A Carbon isotoperecord of CO2 levels during the late Quaternary [J]. Nature, 347:462-464.

Johnson k S, Gordon R M, Coale K H. 1997. What controls dissolved iron concentrations in the world ocean? [J]. Marine chemistry, 57 (3-4): 137-161.

Kazumi O, Eiichi T. 2013. biogeochemical effects of atmospheric oxygen concentration, phosphorus weathering, and sea-level stand on oceanic redox C Hemistry:implications for greenhouse climates. Earth and Planetary of Science letters, 373:129-139.

Kazumi O, Eiichi T. 2013.Biogeochemical effects of atmospheric oxygen concentration, phosphorus weathering, and sea-level Stand on oceanic redox chemistry:implications for greenhouse climates. Earth and Planetary Sci-ence Letters, 373:129-139.

Kenneth S J, Kenneth H C, Virginia A E, Neil W T. 1994. Iron Photochemistry in seawater the equatorial pacif-ic[j]. Marine Chemistry, 46 (4): 319-334.

Kentaro N, Yasuhiro K, Kensaku T, Teruaki I. 2007. Geochemistry of hydrothermally altered basaltic rocks from the southwest Indian Ridge near the Rodriguez Triple junction[j ]. Marine Geology, 239 (3-4): 125-141.

Kerr A C, Mahoney J. 2007. Oceanic plateaus:problematic Plumes, potential paradigms [J]. Chemical Geology, 241 (3-4): 332-353.

Kevin B, Trond H T. 2004. Derivation of Large igneous provinces of the past million years from long-term heter-ogeneities in the deep mantle [J] . Earth and planetaryscience Letters, 227 (3-4): 531-538.

Lam P J, Bishop J. 2008. The continental margin is a key source of iron to the HNLC North Pacific Ocean[j]. Geophysical Letters, 35 (7): 521-539.

Larson R L. 1991.Geological consequences of Superplumes[j]. Geology, 19:963-966.

Leblanc K, Hare C E, Boyd P W, Bruland K W, Sohst B, Pickmere S, Lohan m C, Buck K, Ellwood m, Hutchins D A. 2005. Fe and Zn effects on the Si cycle and diatom community structure in two-contrasting high and low-silicate HNLC]. Deep Sea 2017 Year Papers, I:oceanographic, 52 (10): 1842-1864.

Leckie R M, Bralower T J, Cashman R. 2002. Oceanic anoxic events and plankton evolution:biotic response to tectonic forcing the during [J]. Paleoceanography, 17:1-29.

Lehman S J, Keigwin L. 1992. Sudden changes in North Atlantic circulation during the last deglacbtion[j]. Natare, 356:757-762.

Liu Benpei, Zhang shihong.1997. Rhythms of different geospheres and their relations in middle juras-sic-early. Earth Science Frontiers (Chinese University of Geosciences, Beijing), 4 (3/4): 65-74 (in Chinese with Chinese abstract).

Liu Z H, Dreybrodt W, Liu H J. 2011. Atmospheric CO2 sink:silicate weathering or carbonate weathering? [J] Ap-plication geochemistry, 26:292-294.

Liu Z H, Dreybrodt W, Wang H J. 2010. A New Direction in effective accounting for the atmospheric CO2 budget:consi Dering the combined action of carbonate dissolution, the global water cycle and photosyn-thetic uptake of DIC by aquatic or ganisms [J]. Earth Science Review, 99:162-172.

Liu Zaihua, drevhrodt W, Liu Huan. Atmospheric CO2 sink:silicate weathering or carbonate weather-ing[j] . Quaternary sciences,31:426-430 (in Chinese with Chinese abstract).

Liu Zaihua, dreybrodtw,wanghaijing. 2007. An important CO2 sinks generated by the global water cy-cle[j]. Chinese Science Bulletin: 2418-2422 (in Chinese).

Liu zaihua.2012. New progress and prospects in the study of rockweathering-related Carbon sinks[j]. Chinese Science bulletin,57 (2/3): 95-102 (in Chinese).

Liu Yushan, Zhang Guilan. 1996. A experimental study on sea Water-basalt interaction at 250~500°c and Mpa[j]. Geochimica,25:53-62 (in Chinese with Chinese abstract).

Lu Lu, Yan lilong, Li Qiuhuan, Zeng Lu, Jin Xin, Zhang Yuxiu, Hou Quanlin, Zhang Kaijun. 2016. Oceanic Plat-eau and its significances on the earth system:a Review[j]. Acta Petrologica sinica,32 (6): 1851-1876 (in Chinese with Chinese abstract).

Lui h C, Jeffrey c A, Damon a h. 2002. Lithium and Lithium isotope through the Upper oceanic crust:a study of Seawater-basalt Exchange at ODP Sites 504B and 89 6A [J]. Earth and Planetary Science Letters, 201 (1): 187-201.

Ma Zongjin, Du pinren, Lu Miaoan. Multi-layered interaction of the earth[j]. Earth Science Frontiers, A (2): 11-21 (in Chinese with Chinese abstract).

Mackey D J, OSullivan J E, Watson R J. 2002. Iron in the Western pacific:a riverine or hydrothermal source for Iron in the equatorial? [J]. Deep Sea i:oceanographic Papers, 49 (5): 877-893.

Mann P, Asahiko T. 2004. Global tectonic significance of the Solomon Islands and Ontong Java Plateau conver-gent]. Tectonophysics, 389 (3/4): 137-190.

Martin J H, Coale K H, Johnson K S, Fitzwater s E, Gordon R M, Tanner S J, Hunter C N, Elrod V A, Nowicki J L, Coley T L, Barber R T, Lindley S, Watson a J, Van Scoy K, de C S, liddicoat M I, Ling R, Stanton T, Stockel J, Collins C, Anderson a , Bidigare R, Ondrusek m, Latasa m, Millero F J, Lee K, Yao W, Zhang J Z, Friederich G, Sakamoto C, Chavez F, Buck K, Kolb Er Z, Greene R, Falkowski p, Chisholm s W, Hoge F, Swift R, Yungel J, Turner S, Nightingale P, Hatton A, Liss p, Tindale N W. 1994. Testing the iron hypothesis in ecosystems of the equatorial Pacific]. Nature, 371:123-129.

Martin J H, Gordon R M. 1988. Northeast Pacific Iron Distributions in relation to phytoplankton productiv-itys[j]. Deep Sea Oceanographic Papers, 35 (2): 177-196.

Martin J. H. 1990. Glacical-interglacial CO2change:the iron hypothesis [J]. Paleoceanography, 5:1-13.

Martin R W, Timothy D J, Karen J. H. 2014. The role of iron sources and Transport for southern Ocean productivi-ty [J]. Deep Sea Resarch Part i:oceanographic papers, 87:82-94.

Mercedes de la P, Emma m H, Xose A p, Melchor G D, Magdalena S C, Jesus m F, Abdellatif O, Fiz F p, Aida f R. 20 Reconstruction of the seasonal cycle of Air-sea CO2 fluxes in the Strait of Gibraltar [J]. Marine chemistry, 126 (1/4): 155-162.




DOI: http://dx.doi.org/10.18686/jaoe.v2i1.1156

Refbacks