• Login
  • Register
  • Search

The impact of freshening over the Antarctic Ocean on Pacific Decadal Oscillation

Xiaolin Zhang

Abstract


The profound influence of the Antarctic Ocean freshening on the Pacific Decadal Oscillation (PDO) is investigated in this study by utilizing a series of fully coupled ocean-atmosphere 400-year-modeling experiments. The simulated results derived from the Fast Ocean-Atmosphere Model (FOAM) can reasonably identify the spatial pattern and time period (10–20 years and 20–50 years) of the observed PDO with slightly weak amplitudes. In the sensitivity experiment (Southern Ocean Water Hosing), 1.0 Sv (Sverdrup, 1Sv = 1.0 × 106 m3/s) freshwater flux is uniformly imposed over the Antarctic Ocean for 400 years. As a response to this Antarctic Ocean freshening, the Tropical Pacific Ocean displays a normal “La Niña pattern”, while the low-frequency variability within the North Pacific Ocean is much weakened. Preserving the PDO’s spatial pattern, the multidecadal (20–50 years) magnitude becomes weak and shifts toward higher frequency. In contrast, the decadal magnitude of the PDO (10–20 years) is slightly reinforced and also shifts towards higher frequency. Dynamical analysis indicates that the shortening of the PDO multidecadal variability is mainly caused by the acceleration of the first-baroclinic-mode Rossby waves. The spreading of the fresh anomalies and associated increasing stratification in the North Pacific Ocean result in the shortening of the long Rossby wave propagation to cross the subtropical North Pacific basin. A heat budget analysis further shows that the upper-ocean thermodynamic variability in relationship to the stratification oscillation in the North Pacific Ocean is mainly associated with the anomalous behaviors of the meridional advection, heat flux and ocean mixing.


Keywords


Pacific Decadal Oscillation; freshwater; Antarctica; Rossby waves; heat budgets; coupled models

Full Text:

PDF

Included Database


References


Kanfoush SL, Hodell DA, Charles CD, et al. Millennial-scale instability of the Antarctic ice sheet during the last glaciation. Science 2000; 288(5472): 1815–1818. doi: 10.1126/science.288.5472.1815

Huang E, Tian J. Ice melt-water events and abrupt climate change during the last deglaciation. Chinese Science Bulletin 2008; 53: 1437–1447.

Doake CSM, Corr HFJ, Rott H, et al. Breakup and conditions for stability of the northern Larsen Ice Shelf, Antarctica. Nature 1998; 391: 778–780. doi: 10.1038/35832

Rignot E, Bamber JL, van den Broeke MR, et al. Recent Antarctic ice mass loss from radar interferometry and regional climate modelling. Nature Geoscience 2008; 1: 106–110. doi: 10.1038/ngeo102

Velicogna I, Sutterley TC, van den Broeke MR. Regional acceleration in ice mass loss from Greenland and Antarctica using GRACE time-variable gravity data. Geophysical Research Letters 2014; 119: 8130–8137. doi: 10.1002/2014GL061052

Rignot E, Mouginot J, Scheuchl B, et al. Four decades of Antarctic Ice Sheet mass balance from 1979–2017. Environmental Sciences 2019; 116(4): 1095–1103. doi: 10.1073/pnas.1812883116

Ma H, Wu L, Li Z. Impact of freshening over the Southern Ocean on ENSO. Atmospheric Science Letters 2013; 14(1): 28–33. doi: 10.1002/asl2.410

Ma H, Li Z, Feng T, Liu C. Impacts of freshwater forcing over the Southern Ocean on Southern Annual Mode (Chinese). Journal of Meteorology and Environment 2015; 31: 81–88.

Zhi H, Zhang RH, Lin P, Wang L. Quantitative analysis of the feedback induced by the freshwater flux in the tropical Pacific using CMIP5. Advances in Atmospheric Sciences 2015; 32(10): 1341–1353. doi: 10.1007/s00376-015-5064-0

Zhi H, Zhang RH, Lin P, Wang L. Simulation of salinity variability and the related freshwater flux forcing in the tropical Pacific: An evaluation using the Beijing normal university earth system model (BNU-ESM). Advances in Atmospheric Science 2015; 32(11): 1551–1564. doi: 10.1007/s00376-015-4240-6

Bakker P, Prange M. Response of the intertropical convergence zone to Antarctic ice sheet melt. Geophysical Research Letter 2018; 45: 8673–8680. doi: 10.1029/2018GL078659

Trenberth KE, Hurrell JW. Decadal atmosphere-ocean variations in the Pacific. Climate Dynamics 1994; 9(6): 303–319. doi: 10.1007/BF00204745

Mantua NJ, Hare SR, Zhang Y, et al. A Pacific interdecadal climate oscillation with impacts on salmon production. Bulletin of the American Meteorological Society 1997; 78(6): 1069–1080. doi: 10.1175/1520-0477(1997)078%3C1069:APICOW%3E2.0.CO;2

Minobe S. Resonance in bidecadal and pentadecadal climate oscillations over the North Pacific: Role in climatic regime shifts. Geophysical Research Letters 1999; 26(7): 855–858. doi: 10.1029/1999GL900119

Chhak KC, Lorenzo ED, Schneider N, Cummins PF. Forcing of low-frequency ocean variability in the Northeast Pacific. Journal of Climate 2009; 22(5): 1255–1276. doi: 10.1175/2008JCLI2639.1

Wallace JM, Gutzler DS. Teleconnections in the geopotential height field during the Northern Hemisphere winter. Monthly Weather Review 1981; 109: 784–812. doi: 10.1175/1520-0493(1981)109<0784:TITGHF>2.0.CO;2

Kwon YO, Deser C. North Pacific decadal variability in the Community Climate System model version 2. Journal of Climate 2007; 20(11): 2416–2433. doi: 10.1175/JCLI4103.1

Schneider N, Miller AJ, Pierce DW. Anatomy of North Pacific decadal variability. Journal of Climate 2002; 15(6): 586–605. doi: 10.1175/1520-0442(2002)015<0586:AONPDV>2.0.CO;2

Wu L, Liu Z, Gallimore R, et al. Pacific decadal variability: The tropical Pacific mode and the North Pacific mode. Journal of Climate 2003; 16(8): 1101–1120. doi: 10.1175/1520-0442(2003)16%3C1101:PDVTTP%3E2.0.CO;2

Ramos RD, Goodkin NF, Siringan FP, Hughen KA. Coral records of temperature and salinity in the Tropical Western Pacific reveal influence of the Pacific Decadal Oscillation since the late nineteenth century. Paleoceanography and Paleoclimatology 2019; 34(8): 1344–1358. doi: 10.1029/2019PA003684

Byrne SM, Merrifield MA, Carter ML, et al. Southern California winter precipitation variability reflected in 100-year ocean salinity record. Communications Earth & Environment 2023; 4(1): 143. doi: 10.1038/s43247-023-00803-8

Jyoti J, Swapna P, Krishnan R, Naidu CV. Pacific modulation of accelerated south Indian Ocean sea level rise during the early 21st Century. Climate Dynamics 2019; 53: 4413–4432. doi: 10.1007/s00382-019-04795-0

Miller AJ, Schneider N. Interdecadal climate regime dynamics in the North Pacific Ocean: Theories, observations and ecosystem impacts. Progress in Oceanography 2000; 47(2): 355–379. doi: 10.1016/S0079-6611(00)00044-6

Gu DF, Philander SGH. Interdecadal climate fluctuations that depend on exchanges between the tropics and extratropics. Science 1997; 275(5301): 805–807. doi: 10.1126/science.275.5301.805

Latif M, Barnett TP. Causes of decadal climate variability over the North Pacific and North America. Science 1994; 266(5185): 634–637. doi: 10.1126/science.266.5185.634

Latif M, Barnett TP. Decadal climate variability over the North Pacific and North America: Dynamics and predictability. Journal of Climate 1996; 9(10): 2407–2423. doi: 10.1175/1520-0442(1996)009%3C2407:DCVOTN%3E2.0.CO;2

Fang C. The Effect of Global Warming on North Pacific Decadal Variability and the Possible Mechanism [PhD thesis]. Ocean University of China; 2010.

Rashid HA, Power SB, Knight JR. Impact of multidecadal fluctuations in the Atlantic thermohaline circulation on Indo-Pacific climate variability in a coupled GCM. Journal of Climate 2010; 23: 4038–4044. doi: 10.1175/2010JCLI3430.1

Liu Z. Dynamics of interdecadal climate variability: A historical perspective. Journal of Climate 2012; 25(6): 1963–1995. doi: 10.1175/2011JCLI3980.1

Newman M, Alexander MA, Ault TR, et al. The Pacific Decadal Oscillation, revisited. Journal of Climate 2016; 29(12): 4399–4427. doi: 10.1175/jcli-d-15-0508.1

Liu Z, Di Lorenzo E. Mechanisms and predictability of Pacific decadal variability. Current Climate Change Reports 2018. doi: 10.1007/s40641-018-0090-5

Power S, Lengaigne M, Capotondi A, et al. Decadal climate variability in the tropical Pacific: Characteristics, causes, predictability and prospects. Science 2021; 374(6563): eaay9165. doi: 10.1126/science.aay9165

Frankignoul C, Hasselmann K. Stochastic climate models, Part II Application to sea-surface temperature anomalies and thermocline variability. Tellus 1977; 29(4): 289–305. doi: 10.3402/tellusa.v29i4.11362

Alexander MA, Penland C. Variability in a mixed layer ocean model driven by stochastic atmospheric forcing. Journal of Climate 1996; 9(10): 2424–2442. doi: 10.1175/1520-0442(1996)009%3C2424:VIAMLO%3E2.0.CO;2

Jin FF. A theory of interdecadal climate variability of the North Pacific ocean-atmosphere system. Journal of Climate 1997; 10(8): 1821–1835. doi: 10.1175/1520-0442(1997)010%3C1821:ATOICV%3E2.0.CO;2

Pierce DW, Barnett TP, Schneider N, et al. The role of ocean dynamics in producing decadal climate variability in the North Pacific. Climate Dynamics 2001; 18(1/2): 51–70. doi: 10.1007/s003820100158

Jacobs GA, Hurlburt HE, Kindle JC, et al. Decade-scale trans-Pacific propagation and warming effects of an El Niño anomaly. Nature 1994; 370(6488): 360–363. doi: 10.1038/370360a0

Graham NE. Decadal-scale climate variability in the tropical and North Pacific during the 1970s and 1980s observations and model results. Climate Dynamics 1994; 10(3): 135–162. doi: 10.1007/BF00210626

Alexander MA, Bladé I, Newman M, et al. The atmospheric bridge: The influence of ENSO teleconnections on air-sea interaction over the global oceans. Journal of Climate 2002; 15(16): 2205–2231. doi: 10.1175/1520-0442(2002)015<2205:TABTIO>2.0.CO;2

Miller AJ, Cayan DR, White BW. A westward-intensified decadal change in the North Pacific thermocline and gyre-scale circulation. Journal of Climate 1998; 11(12): 3112–3127. doi: 10.1175/1520-0442(1998)011%3C3112:AWIDCI%3E2.0.CO;2

Saravanan R, McWilliam JC. Advective ocean-atmosphere interaction: An analytical stochastic model with implications for decadal variability. Journal of Climate 1998; 11(2): 165–188. doi: 10.1175/1520-0442(1998)011<0165:AOAIAA>2.0.CO;2

Holland WR, Haidvogel DB. On the vacillation of an unstable baroclinic wave field in an eddy-resolving model of the oceanic general circulation. Journal of Physical Oceanography 1981; 11: 557–568. doi: 10.1175/1520-0485(1981)011<0557:OTVOAU>2.0.CO;2

Robertson AW. Interdecadal variability over the North Pacific in a multi-century climate simulation. Climate Dynamics 1996; 12: 227–241. doi: 10.1007/BF00219498

Guilderson TP, Schrag DP. Abrupt shift in subsurface temperatures in the tropical Pacific associated with changes in El Niño. Science 1998; 281(5374): 240–243. doi: 10.1126/science.281.5374.240

Liu Z, Zhang RH. Propagation and mechanism of decadal upper-ocean variability in the North Pacific. Geophysical Research Letters 1999; 26(6): 739–742. doi: 10.1029/1999GL900081

Zhang RH, Levitus S. Structure and cycle of decadal variability of upper ocean temperature in the North Pacific. Journal of Climate 1997; 10(4): 710–727. doi: 10.1175/1520-0442(1997)010<0710:SACODV>2.0.CO;2

Zhang RH, Rothstein LM, Busalacchi AJ. Origin of upper-ocean warming and El Niño change on decadal time scales in the tropical Pacific Ocean. Nature 1998; 391(6670): 879–883. doi: 10.1038/36081

Zhang RH, Rothstein LM, Busalacchi AJ. Interannual and decadal variability of the subsurface thermal structure in the Pacific Ocean: 1961–90. Climate Dynamics 1999; 15(10): 703–717. doi: 10.1007/s003820050311

Watanabe M, Kimoto M. Behavior of midlatitude decadal oscillations in a simple atmosphere-ocean system. Journal of the Meteorological Society of Japan 2000; 78(4): 441–460. doi: 10.2151/jmsj1965.78.4_441

Giese BS, Urizar SC, Fučkar NS. Southern Hemisphere origins of the 1976 climate shift. Geophysical Research Letters 2002; 29(2): 1014. doi: 10.1029/2001GL013268

Huang B, Mehta VM. Response of the Pacific and Atlantic oceans to interannual variations in net atmospheric freshwater. Journal of Geophysical Research Atmospheres 2005; 110(C8): C08008. doi: 10.1029/2004JC002830

Kang SM, Held IM, Frierson DMW, Zhao M. The response of the ITCZ to extratropical thermal forcing: Idealized slab-ocean experiments with a GCM. Journal of Climate 2008; 21(14): 3521–3532. doi: 10.1175/2007JCLI2146.1

Luo Y, Rothstein LM, Zhang RH, Busalacchi AJ. On the connection between South Pacific subtropical spiciness anomalies and decadal equatorial variability in an ocean general circulation model. Journal of Geophysical Research Oceans 2005; 110(C10): C10002. doi: 10.1029/2004JC002655

Luo Y, Rothstein LM, Zhang RH. Response of Pacific subtropical-tropical thermocline water pathways and transports to global warming. Geophysical Research Letters 2009; 36(4): L04601. doi: 10.1029/2008GL036705

Kay JE, Wall C, Yettella V, et al. Global climate impacts of fixing the Southern Ocean shortwave radiation bias in the Community Earth System Model (CESM). Journal of Climate 2016; 29(12): 4617–4636.

Jacob R. Low Frequency Variability in a Simulated Atmosphere-Ocean System [PhD thesis]. University of Wisconsin-Madison; 1997. 155p.

Liu Z, Kutzbach J, Wu L. Modeling climate shift of El Niño variability in the Holocene. Geophysical Research Letters 2000; 27(15): 2265–2268. doi: 10.1029/2000GL011452

Wu L, Liu Z. Decadal variability in the North Pacific: The eastern North Pacific mode. Journal of Climate 2003; 16(19): 3111–3131. doi: 10.1175/1520-0442(2003)016<3111:DVITNP>2.0.CO;2

Wu L, Liu Z. North Atlantic decadal variability: Air-sea coupling, oceanic memory, and potential northern hemisphere resonance. Journal of Climate 2005; 18(2): 331–349. doi: 10.1175/JCLI-3264.1

Rayner NA, Parker DE, Horton EB, et al. Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. Journal of Geophysical Research 2003; 108(D14): 4407. doi: 10.1029/2002JD002670

Huang RX. Real freshwater flux as a natural boundary condition for the salinity balance and thermohaline circulation forced by evaporation and precipitation. Journal of Physical Oceanography 1993; 23(11): 2428–2446. doi: 10.1175/1520-0485(1993)023%3C2428:RFFAAN%3E2.0.CO;2

Griffies SM, Pacanowski RC, Schmidt M, Balaji V. Tracer conservation with an explicit free surface method for z-coordinate ocean models. Monthly Weather Review 2001; 129(5): 1081–1098. doi: 10.1175/1520-0493(2001)129%3C1081:TCWAEF%3E2.0.CO;2

Kang X, Zhang RH, Wang G. Effects of different freshwater flux representations in an ocean general circulation model of the tropical Pacific. Science Bulletin 2007; 62(5): 345–351. doi: 10.1016/j.scib.2017.02.002

Ma H, Wu L. Global teleconnections in response to freshening over the Antarctic Ocean. Journal of Climate 2011; 24: 1071–1088. doi: 10.1175/2010JCLI3634.1

Yang Y, Wu L, Fang C. Will global warming suppress North Atlantic tripole decadal variability? Journal of Climate 2012; 25(6): 2040–2055. doi: 10.1175/JCLI-D-11-00164.1

Chelton DB, deSzoeke RA, Schlax MG, et al. Geographical variability of the first baroclinic Rossby radius of deformation. Journal of Climate 1998; 28(3): 433–460. doi: 10.1175/1520-0485(1998)028%3C0433:GVOTFB%3E2.0.CO;2

Liu Z, Alexander M. Atmospheric bridge, oceanic tunnel, and global climatic teleconnections. Reviews of Geophysics 2007; 45: RG2005. doi: 10.1029/2005RG000172

Frankignoul C, Kestenare E. The surface heat flux feedback. Part I: Estimates from observations in the Atlantic and the North Pacific. Climate Dynamics 2002; 19(8): 633–647. doi: 10.1007/s00382-002-0252-x

Liu J, Yuan C, Luo JJ. Impacts of model resolution on responses of western North Pacific tropical cyclones to ENSO in the HighResMIP-PRIMAVERA ensemble. Frontier in Earth Science 2023; 11: 1169885. doi: 10.3389/feart.2023.1169885




DOI: http://dx.doi.org/10.18686/jaoe.v11i2.9793

Refbacks