• Login
  • Register
  • Search

Synthesis and Biological Evaluation of PEGylated Antimicrobial Peptide

Can Yu, Yu Chai, Xunxiang Qiu, Yang Wan

Abstract


Antimicrobial peptides (AMPs) possess strong antibacterial activity but are often associated with undesirable hemolytic activity, cytotoxicity, and sensitivity to proteolysis. Here, we report a simple and efficient prodrug system that combines antimicrobial peptides with photo-releasable PEG, successfully applied to the linear peptide indolicidin. After modification, this peptide significantly reduced hemolytic and cytotoxic effects while enhancing stability against proteolysis. Under irradiation conditions, the AMP is released, demonstrating antibacterial activity comparable to that of natural products.

Keywords


AMPs; Photo-releasable; PEGylation; Spatiotemporal release

Full Text:

PDF

Included Database


References


[1] Zasloff, M. Antimicrobial Peptides of Multicellular Organisms. Nature 2002, 415 (6870), 389–395.

[2] Hancock, R. E. W.; Sahl, H.-G. Antimicrobial and Host-Defense Peptides as New Anti-Infective Therapeutic Strategies. Nat. Biotechnol. 2006, 24 (12), 1551–1557.

[3] Wang, G.; Li, X.; Wang, Z. APD3: The Antimicrobial Peptide Database as a Tool for Research and Education.Nucleic Acids Res. 2016, 44 (D1), D1087–D1093.

[4] Yeaman, M. R.; Yount, N. Y. Mechanisms of Antimicrobial Peptide Action and Resistance. Pharmacol. Rev.2003, 55 (1), 27–55.

[5] Mahlapuu, M.; Håkansson, J.; Ringstad, L.; Björn, C. Antimicrobial Peptides: An Emerging Category of Therapeutic Agents. Front. Cell Infect. Microbiol. 2016, 6.

[6] Fox, J. L. Antimicrobial Peptides Stage a Comeback. Nat. Biotechnol. 2013, 31 (5), 379–382.

[7] Dong, N.; Zhu, X.; Chou, S.; Shan, A.; Li, W.; Jiang, J. Antimicrobial Potency and Selectivity of Simplified Symmetric-End Peptides. Biomaterials 2014, 35 (27), 8028–8039.

[8] Yuan, F.; Tian, Y.; Qin, W.; Li, J.; Yang, D.; Zhao, B.; Yin, F.; Li, Z. Evaluation of Topologically DistinctConstrained Antimicrobial Peptides with Broad-Spectrum Antimicrobial Activity. Org. Biomol. Chem. 2018,16 (32), 5764–5770.

[9] Klausen, M.; Dubois, V.; Verlhac, J.; Blanchard-Desce, M. Tandem Systems for Two-Photon Uncaging of Bioactive Molecules. ChemPlusChem 2019, 84 (6), 589–598.

[10] Nordström, R.; Malmsten, M. Delivery Systems for Antimicrobial Peptides. Adv. Colloid Interface Sci. 2017,242 (Supplement C), 17–34.

[11] Yeoh, Y. Q.; Yu, J.; Polyak, S. W.; Horsley, J. R.; Abell, A. D. Photopharmacological Control of Cyclic Antimicrobial Peptides. ChemBioChem 2018, 19 (24), 2591–2597.

[12] Veronese, F. M.; Mero, A. The Impact of PEGylation on Biological Therapies. BioDrugs 2008, 22 (5),315–329.

[13] Nordström, R.; Nyström, L.; Ilyas, H.; Atreya, H. S.; Borro, B. C.; Bhunia, A.; Malmsten, M. Microgels as Carriers of Antimicrobial Peptides – Effects of Peptide PEGylation. Colloids Surf., A 2019, 565, 8–15.

[14] Guan, Q.; Huang, S.; Jin, Y.; Campagne, R.; Alezra, V.; Wan, Y. Recent Advances in the Exploration of Therapeutic Analogues of Gramicidin S, an Old but Still Potent Antimicrobial Peptide. J. Med. Chem. 2019,62(17), 7603-7617.




DOI: http://dx.doi.org/10.18686/ahe.v8i8.13761

Refbacks