• Login
  • Register
  • Search

The Improved Leslie Model for Population Forecasting

Jinjing Ma, Yongkang Peng, Lianyu Wu

Abstract


Based on China’s population data from 1953 to 2020, the Leslie model combines the fertility rate of women of childbearing age by region and age, the sex ratio of the birth population, the mortality rate, the migration rate between urban and rural
areas by age, the curve fitting migration function, and the application of ARIMA to predict mortality rates to construct a discrete
population dynamics system in order to predict China’s future population development trajectory. The improved Leslie, Leslie,
BP and Malthus models were compared in terms of error rates. The improved Leslie model was more stable than the rest of the
models and had an average error rate of 0.09%, with good model generalization ability. The results show that the improved Leslie
model predicts that the total population will slowly increase under the national regulation policy, and will reach a peak by around
2045 and then decline.

Keywords


Leslie; Population Prediction; ARIMA; Mortality Rate; Mortality Rate

Full Text:

PDF

Included Database


References


[1] WANG Ying, WANG Yanxia, ZHANG Huining, DU Yongqiang. Analysis of population aging prediction and influencing factors based on Malthus model[A]. China Society of Statistical Education, 2015:20.

[2] CHEN Shu-jun, WANG Yi-jiang, LIU Chun-mei. Population Structure and Development Trend of Heilongjiang Province under Different Fertility Policy[J].Journal of Harbin University of Commerce(Social Science Edition),2017(03):28-37.

[3] WANG Yifang, JIANG Yong, LIN Yuyang. The Allocation of Preschool Educational Resources under the Policy of Universal Two-children in China——Based on Leslie Model[J].Journal of Educational Science of Hunan Normal University,2018,17(03):59-66.

[4] NI Xuan-ming, SHEN Xin-ru, HUANG Song, ZHANG Jun-yu.The Convergence Trend of the Age Structure and the Aging Population in China[J].Journal of Applied Statistics and Management,2020,39(02):191-205.

[5] Xiao Hongmin, Ma Haifei, Kang Yanling.Comparison of Two Mortality Prediction Methods[J].Statistics & Decision,2020,36(23):5-8.




DOI: http://dx.doi.org/10.18686/ahe.v6i15.5142

Refbacks