• Login
  • Register
  • Search

Study on Covid-19 Related Weibo Sentiment Classification

Chenyu Bai

Abstract


COVID-19 is currently one of the most significant challenges worldwide. Researchers and governments can make early decisions and take advance action if COVID-19-related public opinion sentiment can be more accurately classified. This paper presents a comparative analysis of popular machine learning-based classifiers. Experiments are conducted using real-world datasets related to COVID-19, validating the effectiveness of BERT. Details are presented in this paper, along with data preprocessing, experiments, and results.

Keywords


Covid-19;Sentiment Classification;BERT

Full Text:

PDF

Included Database


References


[1]Altınel, B., Ganiz, M.C. (2018). Semantic text classification: A survey of past and recent advances. Information Processing & Management 54(6), 1129–1153

[2]Arbane, M., Benlamri, R., Brik, Y., Alahmar, A.D(2023). Social media-based covid-19 sentiment classification model using bilstm. Expert Systems with Applications 212,118710

[3]Aydo˘gan, E., Akcayol, M.A. (2016). A comprehensive survey for sentiment anal- ysis tasks using machine learning techniques. In: 2016 international sym- posium on innovations in intelligent systems and applications (INISTA). pp. 1–7. IEEE.

[4]Cox, D.R. (2018). Analysis of binary data. Routledge.

[5]Devlin, J., Chang, M.W., Lee, K., Toutanova, K. (2018). Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805.

[6]Fountain, D. (20223). Covid-19 Epidemic competition. https://www. datafoun-tain.cn/competitions/424. [Online; accessed 19-01-2023].

[7]Gulati, K., Kumar, S.S., Boddu, R.S.K., Sarvakar, K., Sharma, D.K., No-mani, M. (2022). Com-parative analysis of machine learning-based classification models using sentiment classifica-tion of tweets related to covid-19 pan-demic. Materials Today: Proceedings 51, 38–41.

[8]Hossin, M., Sulaiman, M.N. (2015). A review on evaluation metrics for data classification evalua-tions. International journal of data mining & knowledge management process 5(2), 1.

[9]Joulin, A., Grave, E., Bojanowski, P., Mikolov, T. (2017). Bag of tricks for efficient text classifica-tion. In: Proceedings of the 15th Conference of the Eu- ropean Chapter of the Association for Computational Linguistics: Volume 2, Short Papers. pp. 427–431. Association for Com-putational Linguistics.

[10]Luo, R., Xu, J., Zhang, Y., Zhang, Z., Ren, X., Sun, X. (2019). Pkuseg: A toolkit for multi-domain chinese word segmentation. CoRR abs/1906.11455.

[11]Magerman, D.M. (1995). Statistical decision-tree models for parsing. arXiv preprint cmp-lg/9504030.

[12]Organization, W.H. (2023). WHO Coronavirus (COVID-19) Dashboard. https://covid19.who.int/, [Online; accessed 19-01-2023].

[13]Pang, B., Lee, L., Vaithyanathan, S. (2002). Thumbs up? sentiment classification using machine learning techniques. arXiv preprint cs/0205070.

[14]Sebastiani, F. (2002). Machine learning in automated text categorization. ACM computing surveys (CSUR) 34(1), 1–47 (2002).

[15]Tang, D., Qin, B., Feng, X., Liu, T. (2015). Effective lstms for target-dependent sentiment classifi-cation. arXiv preprint arXiv:1512.01100.

[16]Vapnik, V., Chervonenkis, A.Y. (1964). A class of algorithms for pattern recognition learning. Avtomat. iTelemekh 25(6), 937–945.

[17]Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Po-losukhin, I. (2017). Attention is all you need. Advances in neural information processing systems 30.

[18]Wang, Y., Huang, M., Zhu, X., Zhao, L. (2016). Attention-based lstm for aspect- level sentiment classification. In: Proceedings of the 2016 conference on empirical methods in natural lan-guage processing. pp. 606–615.




DOI: http://dx.doi.org/10.18686/ahe.v7i16.8894

Refbacks