Single-Column Simulation of the Effect of Different Boundary Layer Turbulence Parameterization Schemes on Surface Sensible Heat Fluxes
Abstract
their effects on the surface sensible heat flux. The Wangara Boundary Layer Experiment and The First International Satellite Land Surface
Climatology Project Field Experiment (FIFE) were used. Eight different turbulence closure schemes were used for validation and comparison. These include six first-order closure schemes, one turbulent kinetic energy (TKE) closure scheme and the Reynolds stress second-order
closure scheme. In this paper, the results of the second-order closure solved by the Reynolds stress equation are used as a benchmark. Since
different turbulence closure schemes have different ability to capture turbulence, which in turn affects the turbulence transport ability and influences the heat transport process. The simulation results show that the difference in simulated temperature profiles between different turbulence parameterization schemes is not significant as the complexity of turbulence parameterization increases. However, this difference feeds
back to the surface temperature, turbulent velocity scale and turbulent temperature scale, which affects the variation of the sensible heat flux.
As the simulation integration time changes, the difference between the first-order closure scheme and the Reynolds stress scheme gradually
increases due to the lack of turbulence portrayal. The results of the TKE scheme and the Reynolds stress scheme are more closely matched
with the tendency of the root-mean-square error being smaller, and on the second day both schemes simulate the turbulence better.
Keywords
Full Text:
PDFReferences
[1] Beljaars, A. C. M., & Holtslag, A. A. M. (1991). Flux Parameterization over Land Surfaces for Atmospheric Models. Journal of Applied Meteorology and Climatology, 30(3), 327-341. doi:10.1175/1520-0450(1991)030<0327:FPOLSF>2.0.CO;2.
[2] Bhumralkar, C. M. (1975). Parameterization of the planetary boundary layer in atmospheric general circulation models. Reviews of
Geophysics, 14(2), 215-226. doi:10.1029/RG014i002p00215.
[2] Davy, R. (2018). The Climatology of the Atmospheric Boundary Layer in Contemporary Global Climate Models. Journal of Climate, 31(22), 9151-9173. doi:10.1175/JCLI-D-17-0498.1.
[3] Dudhia, J. (1989). Numerical Study of Convection Observed during the Winter Monsoon Experiment Using a Mesoscale Two-Dimensional Model. Journal of The Atmospheric Sciences - J ATMOS SCI, 46, 3077-3107. doi:10.1175/1520-0469(1989)046<3077:NSOCOD>2.0.CO;2.
[4] Dyer, A. J. (1974). A review of flux-profile relationships. Boundary-Layer Meteorology, 7(3), 363-372. doi:10.1007/BF00240838.
[5] Estoque, M. A., & Bhumralkar, C. M. (1970). A method for solving the planetary boundary-layer equations. Boundary-Layer Meteorology, 1(2), 169-194. doi:10.1007/BF00185738.
[6] Garratt, J. R. (1994). Review: the atmospheric boundary layer. Earth-Science Reviews, 37(1), 89-134. doi:10.1016/0012-
8252(94)90026-4.
[7] Guo, Z., Chen, C., Zhang, H., Chen, J., & Zhang, A. (1999). A One-Dimensional Finite Element Model with Two-Order Closure
Scheme Simulating the Atmospheric Boundary Layer. Part I: Convective Boundary Layer. Chinese Journal of Atmospheric Sciences, 23(6),
733-744. doi:10.3878/j.issn.1006-9895.1999.06.10.
[8] Güttler, I., Branković, Č., O’Brien, T. A., Coppola, E., Grisogono, B., & Giorgi, F. (2014). Sensitivity of the regional climate model
RegCM4.2 to planetary boundary layer parameterisation. Climate Dynamics, 43(7), 1753-1772. doi:10.1007/s00382-013-2003-6.
[9] Holt, T., & Raman, S. (1988). A review and comparative evaluation of multilevel boundary layer parameterizations for first-order
and turbulent kinetic energy closure schemes. Reviews of Geophysics, 26(4), 761-780. doi:10.1029/RG026i004p00761.
[10] Holtslag, A. A. M., & Boville, B. A. (1993). Local Versus Nonlocal Boundary-Layer Diffusion in a Global Climate Model. Journal
of Climate, 6(10), 1825-1842. doi:10.1175/1520-0442(1993)006<1825:LVNBLD>2.0.CO;2.
[11] Jia, W., Zhang, X., Wang, H., Wang, Y., Wang, D., Zhong, J., . . . Lin, Y. (2023). Comprehensive evaluation of typical planetary
boundary layer (PBL) parameterization schemes in China – Part 2: Influence of uncertainty factors. Geosci. Model Dev., 16(22), 6833-6856.
doi:10.5194/gmd-16-6833-2023.
[12] Kim, J., & Ek, M. (1995). A simulation of the surface energy budget and soil water content over the Hydrologic Atmospheric
Pilot Experiments-Modélisation du Bilan Hydrique forest site. Journal of Geophysical Research: Atmospheres, 100(D10), 20845-20854.
doi:10.1029/95JD01469.
[13] Louis, J.-F. (1979). A parametric model of vertical eddy fluxes in the atmosphere. Boundary-Layer Meteorology, 17(2), 187-202.
doi:10.1007/BF00117978.
[14] Mlawer, E. J., Taubman, S. J., Brown, P. D., Iacono, M. J., & Clough, S. A. (1997). Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. Journal of Geophysical Research: Atmospheres, 102(D14), 16663-16682.
doi:10.1029/97JD00237.
[15] Paulson, C. A. (1970). The Mathematical Representation of Wind Speed and Temperature Profiles in the Unstable Atmospheric
Surface Layer. Journal of Applied Meteorology and Climatology, 9(6), 857-861. doi:10.1175/1520-0450(1970)009<0857:TMROWS>2.0.
CO;2.
[16] Pleim, J. E., & Xiu, A. (1995). Development and Testing of a Surface Flux and Planetary Boundary Layer Model for Application
in Mesoscale Models. Journal of Applied Meteorology and Climatology, 34(1), 16-32. doi:10.1175/1520-0450-34.1.16.
[17] Qiu. (2013). Applicability Research of Planetary Boundary Layer Parameterization Scheme in WRF Model over the Alpine Grassland Area. Plateau Meteorology, 32(1), 46-55. doi:10.7522/j.issn.1000-0534.2012.00006.
[18] Sánchez, E., Yagüe, C., & Gaertner, M. A. (2007). Planetary boundary layer energetics simulated from a regional climate model
over Europe for present climate and climate change conditions. Geophysical Research Letters, 34(1). doi:10.1029/2006GL028340.
[19] Shin, H. H., & Hong, S.-Y. (2011). Intercomparison of Planetary Boundary-Layer Parametrizations in the WRF Model for a Single
Day from CASES-99. Boundary-Layer Meteorology, 139(2), 261-281. doi:10.1007/s10546-010-9583-z.
[20] Shin, H. H., Ming, Y., Zhao, M., Golaz, J.-C., Xiang, B., & Guo, H. (2018). Evaluation of Planetary Boundary Layer Simulation
in GFDL Atmospheric General Circulation Models. Journal of Climate, 31(13), 5071-5087. doi:10.1175/JCLI-D-17-0543.1.
[21] Stull, R. B. (1988). An Introduction to Boundary Layer Meteorology: Springer Dordrecht.
[22] Therry, G., & Lacarrère, P. (1983). Improving the Eddy Kinetic Energy model for planetary boundary layer description. Boundary-Layer Meteorology, 25(1), 63-88. doi:10.1007/BF00122098.
[23] Yamada, T., & Mellor, G. (1975). A Simulation of the Wangara Atmospheric Boundary Layer Data. Journal of Atmospheric
Sciences, 32(12), 2309-2329. doi:10.1175/1520-0469(1975)032<2309:ASOTWA>2.0.CO;2.
[24] Zhang, D., & Anthes, R. A. (1982). A High-Resolution Model of the Planetary Boundary Layer—Sensitivity Tests and Comparisons with SESAME-79 Data. Journal of Applied Meteorology (1962-1982), 21(11), 1594-1609. doi:10.1175/1520-0450(1982)021<1594:
AHRMOT>2.0.CO;2.
DOI: http://dx.doi.org/10.18686/ag.v8i1.12580
Refbacks
- There are currently no refbacks.