• Login
  • Register
  • Search

Relationship Between the Landuse and Land Capability Classification in Adıyaman Province (TURKEY)

Salman ÖZÜPEKÇE

Abstract


Remote Sensing and the Geographical Information Systems with their advantages of spatial, spectral and temporal availability and manipulation of data.  In this study, the land cover changes of Adıyaman have been investigated between 1988 and 2018. This study analyses land-use/land-cover (LULC) changes in Adıyaman Province, Turkey.  Landsat satellite images, which provide constant retrospective data, were used in our study to determine temporal and spatial change. The image classified with the “ISODATA method” consisted of 180 classes at first step. According to the findings Adıyaman city, rapidly growing like the other cities of Turkey, while covering an area of 500 km² in 1988, expanded to an area of 4600 km² in 2018.


Keywords


Adıyaman, ISODATA, Landuse, Landsat. Land Capability

Full Text:

PDF

Included Database


References


Alphan, H. (2003). Land‐use change and urbanization of Adana, Turkey. Land degradation & development, 14(6), 575-586.

Bahr, H. (2004). Image segmentation for change detection in urban environments. In J. P. Donnay, M. J. Barnsley, & P. A. Longley (Eds.), Remote sensing and urban analysis (pp. 95–114). London: Taylor & Francis.

Barsi, J. A., Schott, J. R., Palluconi, F. D., Helder, D. L., Hook, S. J., Markhamg, B. L., Chander, & O'Donnell, E. M. (2003). Landsat TM and ETM+ thermal band calibration, Canadian Journal Remote Sensing, 29, pp. 141–153.

Booth, P. (2009). Managing land-use change. Land Use Policy (29), 154- 159.

Campbell, J. B. & Wynne, R. H. (2011). Introduction to Remote Sensing, New York: Guilford Press.

Çelik, M. A. (2012). İslâhiye İlçesi Arazi Kullanımı Üzerinde Yükselti, Eğim ve Toprak Faktörlerinin Etkisi, Kilis 7 Aralık Üniversitesi Sosyal Bilimler Enstitüsü Dergisi, Sayı: 4 (2), ss. 173-186.

Cetinkaya, H. Kulak, M., Özkan, A. Çelik, M.A., Şekeroğlu, N. (2017) INFLUENCE OF GEOGRAPHICAL FACTORS ON THE FATTY ACID PROFILE AND OIL YIELD OF OLEA EUROPAEA L., Scientific Papers. Series A. Agronomy, Vol. LX, pp.468-474.

Dewan, A. M., & Yamaguchi, Y. (2009). Land use and land cover change in Greater Dhaka, Bangladesh: Using remote sensing to promote sustainable urbanization. Applied Geography, 29(3), 390-401.

Genç, L., Saçan, M., Turhan, H. ve Aşar, B. (2010). “Arazi Örtüsünün Landsat TM Uydu Görüntüleri Yardımıyla Belirlenmesi”. Tarım Bilimleri Dergisi 16: 213-224.

Hathout, S. (2002). The use of GIS for monitoring and predicting urban growth in East and West St Paul, Winnipeg, Manitoba, Canada. Journal of Environmental Management, 66, 229–238.

Phung, S. L., Bouzerdoum, A., & Chai, D. (2005). Skin segmentation using color pixel classification: analysis and comparison. IEEE transactions on pattern analysis and machine intelligence, 27(1), 148-154.

Reis, S. (2008). Analyzing land use/land cover changes using remote sensing and GIS in Rize, North-East Turkey. Sensors, 8(10), 6188-6202.

Rogan, J., Miller, J., Stow, D., Franklin, J., Levien, L., Fischer, C., (2003). Land cover change mapping in California using classification trees with Landsat TM and ancillary data. Photogrammetric Engineering and Remote Sensing, 69(7), 793–804

Rogan, J., & Chen, D. (2004). Remote sensing technology for mapping and monitoring land-cover and land-use change. Progress in planning, 61(4), 301-325.

Rogerson, P.A., (2002). Change detection thresholds for remotely sensed images. Journal of Geographical Systems 4, 85–97

Sener, E., Davraz, A., & Ozcelik, M. (2005). An integration of GIS and remote sensing in groundwater investigations: a case study in Burdur, Turkey. Hydrogeology Journal, 13(5-6), 826-834.

Song, C., Woodcock, C.E., Seto, K., Lenney, M.P., Macomber, S., (2001). Classification and change detection using Landsat TM data: when and how to correct atmospheric effects. Remote Sensing of Environment 75, 230–244

Stow, D.A., Chen, D., (2002). Sensitivity of multitemporal NOAA-AVHRR data for detecting land cover changes. Remote Sensing of Environment 80, 297–307.

Taş, B., & Yakar, M. (2010). Afyonkarahisar İlinde Yükselti Basamaklarına Göre Arazi Kullanımı. Coğrafi Bilimler Dergisi 1 (8), 57-76.

Tunç, E., Özkan, A., and Çelik, M.A. (2013). Determination Of The K-Factor Of Arable Land In Yavuzeli And Araban/Gaziantep Province. Journal of International Social Research, 6 (28).

Ünal Ç. and Çelik, M.A (2016) Temporal Change (1984-2015) of Land Use/cover in Çiğli District. International Journal of Social and Related Science (IJSoReS) Vol. 1-No.2 pp. 1-6

Yang, X. ve Lo, C. P. (2002). “Using a Time Series of Satellite Imagery to Detect Land Use and Land Cover Changes in the Atlanta, Georgia Metropolitan Area”. International Journal of Remote Sensing 23 (9): 1775-1798.

Yildirim, Ü. ve Kiliç, F. (2006). “Uzaktan Algılama Yöntemleri ile Afyonkarahisar’ın Şehirsel Gelişiminin İzlenmesi”, 4. Coğrafi Bilgi Sistemleri Bilişim Günleri Bildiri Kitabı, 1-6, İstanbul: Fatih Üniversitesi.

Yuan, F.; Sawaya, K.E.; Loeffelholz, B.C.; Bauer, M.E. (2005) Land cover classification and change analysis of the Twin Cities (Minnesota) metropolitan areas by multitemporal Landsat remote sensing. Remote Sensing of Environment 98, 317-328.

Zhao, G.X.; Lin, G.; Warner, T. (2004) Using Thematic Mapper data for change detection and sustainable use of cultivated land: a case study in the Yellow River delta, China. International. Journal of Remote Sensing, 25 (13), 2509-2522.

Zsuzsanna, D.; Bartholy, J.; Pongracz, R.; Barcza, Z. (2005) Analysis of land-use/land-cover change in the Carpathian region based on remote sensing techniques. Physics and Chemistry of Earth, 30, 109-115.

Wardlow, B. D., ve Egbert, S. L. (2008). Large-area Crop Mapping Using Time-series MODIS 250 m NDVI Data: An Assessment for the U. S. Central Great Plains. Remote Sensing of Envitonment 112, 1096-1116.




DOI: http://dx.doi.org/10.18686/ag.v0i0.1295

Refbacks